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Abstract 

An adaptive approach to control a cooling coil chilled water valve operation, called adaptive 

fuzzy logic control (AFLC), is developed and validated in this study. The AFLC calculates 

the error between the supply air temperature and supply air temperature set point for air in an 

air handling unit (AHU) of a heating, ventilating, and air conditioning (HVAC) system and 

determines optimal fuzzy logic parameters to minimize the error between the supply air 

temperature and its set point. The AFLC uses genetic algorithms and evolutionary strategies 

to determine the fuzzy rule matrix and fuzzy membership functions for an AHU in HVAC 

systems. It is shown that the AFLC can reduce hydronic energy consumption while 

maintaining occupant comfort. 

Cooling coil models are developed using neural network, general regression neural network 

and lump capacitance methods to predict the supply air temperature. These models helped 

with the development of the adaptive fuzzy logic controller. 

Two types of validation experiments were conducted, one with cyclically changing supply air 

temperatures and the second with cyclically changing supply air flow rates. Experiments 

conducted on two identical real HVAC systems were used to compare the performances of 

the AFLC to a conventional proportional, integral and derivative (PID) controller. To 

remove bias between the testing systems, the controllers were switched from one system to 

the other. 

The validation experiments indicate that the HVAC system operated under the AFLC 

consumes 1 to 7 % less hydronic energy when compared with a conventional PID controlled 

system. More actuator travel distance was observed when using the AFLC. The AFLC 

maintained better occupant comfort conditions when compared with the conventional PID 

controller. It was observed that the controlled variable for the AFLC system required 0 to 

185% more rise time, had 9 to 68% less overshoot and required 11 to 45% less settling time 

as compared to the conventional PID controlled system. 
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Chapter 1 Introduction 

1.1 Background/Literature Review 

The increasing demand for energy efficient buildings has created a need for more energy 

efficient heating, ventilation, and air-conditioning (HVAC) equipment and systems along 

with the need to operate and control these systems in the most energy efficient manner. Space 

heating and cooling is the largest energy expense in most homes, accounting for more than 

44% of the average home's utility bill (EERE, 2005). About 32% of the electricity generated 

in the United States is consumed to heat, cool, ventilate and light commercial buildings 

(ASHRAE 2000). 

U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy published a 

report on energy savings potential for building technologies program in July 2002. Out of 55 

different technologies studied, 15 technologies, shown in Table 1.1-1, were selected for 

further study based on energy saving potential and the value of further study toward 

improving estimates of ultimate market-achievable energy savings potential, notably energy 

savings potential, current and potential future economics, and key barriers facing each 

option. 

Table 1.1-1: Technologies in each category selected for further study (EERE, 2002) 

Category Technology for further study 

Component Electronically Commutated Permanent Magnet Motor (ECPM) 

Improved Duct Sealing 

MicroChannel Heat Exchanger 

Smaller Centrifugal Compressors 

Equipment 

Enthalpy/Energy Recovery Heat Exchangers for Ventilation 

Heat Pump for Cold Climates 

Liquid Desiccant Air Conditioner 
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Table 1.1-2: Technologies in each category selected for further study continued 
Systems 

Dedicated Outdoor Air Systems 

Displacement Ventilation 

Microenvironment (Task-ambient Conditioning) 

Novel Cool Storage 

Radiant Ceiling Cooling/Chilled Beam 

Variable Refrigerant Volume/Flow 

Controls / Operations 

Adaptive/Fuzzy Logic HVAC Control 

System/Component Performance Diagnostics 

Adaptive/Fuzzy Logic Controls was one of these 15 technologies and had a technical energy 

savings potential of 0.23 quads which is about 5% of HVAC energy use (EERE, 2002). 

Several studies have been reported about the application of adaptive fuzzy logic control. 

This literature review focuses on the development and validation of adaptive fuzzy logic 

controllers, self-tuning methods, artificial neural networks, and genetic algorithms. Studies 

that relate to building energy applications are emphasized. 

1.1.1 Fuzzy Logic Controllers 

Fuzzy Logic Controllers (FLCs) are based on a set of fuzzy control rules which make use of 

people's common sense and experience. The fuzzy logic used in these controllers is very 

well defined mathematically and is able to take into account the uncertainty in the knowledge 

used to develop the rules and the uncertainty in the operating conditions. The initial rules for 

FLCs come from the experience of people who work with the systems that are to be 

controlled. This experience is obtained in the form of linguistic rules such as "If the 

temperature is too low, open the hot water valve" and "If the temperature is too low and 

going down fast, open the hot water valve very quickly", etc. These initial rules are then 

used to construct a fuzzy control matrix that implements the logic of the controller. 
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The initial fuzzy control matrix and other FLC parameters need to be refined using 

adjustment strategies that are usually based on manual trial and error methods to achieve 

improved performance (Huang and Nelson 1991, 1993, 1994a, 1994b). Several researchers 

have studied and implemented self-tuning or adaptive fuzzy logic controllers (AFLCs) that 

improve their performance as they adjust to the controlled process and the environment. The 

operation of an AFLC relies on past experience that looks at suitable combinations of control 

strategies (control rules, membership functions, and scale factors) and the effects they 

produce. A particular feature of AFLCs is that they automatically improve their performance 

until they converge to a predetermined optimal condition. 

The first AFLC suggested evaluating and modifying the control rules by a self-organizing 

algorithm (Mamdani 1979). Several other types of AFLCs have been proposed by 

researchers (Xu 1987, Shao 1988, Tansheit 1988, Acosta 1992, and Lee 1992). Most of these 

AFLCs use the tracking error and derivative of error at every sampling instant as the basis 

not only for the control algorithm but also for the adaptive algorithm. The control action is 

improved as it is created. The control outputs often become bang-bang signals and 

convergence of the modifying process is usually slow. 

A self-tuning controller for HVAC systems was presented by Wallenborg (1991). A new 

algorithm for a self-tuning controller was developed in which a discrete time process transfer 

function was calculated from the wave form of a periodic oscillation obtained with a relay 

feedback tuning experiment. A general linear discrete time controller was designed using 

pole placement based on an input-output model. A substantial reduction in commissioning 

time was achieved compared with manual tuning of conventional controllers. 

A computer simulation was studied by Huang and Nelson (1991) to test a new PID control 

algorithm developed using a fuzzy rule based system. The results showed impressive 

performance of the PID law combining fuzzy controller for HVAC applications. 
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Self tuning control with fuzzy rule based supervision for HVAC applications was studied by 

Ling et al. (1991). The performance of combinations of fuzzy rule based supervisor and self 

tuning controller was evaluated using a detailed component based simulator developed to test 

building energy management systems. 

Rule development and adjustment strategies of a fuzzy logic controller (FLC) for an HVAC 

system were analyzed and experimentally evaluated by Huang and Nelson (1993, 1994a, 

1994b) for controlling a pneumatic valve to control the temperature of hot water to a hot 

water coil. 

Some modern control strategies were applied to a HVAC system. Zaheer-uddin (1993) used a 

multivariate control design in a water heating system. The optimal regulator design was 

applied for damper control of the supply air to a single zone. The sub-optimal operation was 

employed in a single zone with a heating coil for a constant air volume (CAV) system. The 

model reference adaptive control was applied to a single zone with a cooling coil for a 

variable air volume (VAV) system (Zaheer-uddin 1993). Simulation results showed that 

these modern control strategies were stable. 

The neural network method was applied to a HVAC system for the first time by Curtiss et al. 

(1993, 1994 and 1996). A hot water coil that was used to heat air was modeled by two types 

of ANN s and a predictive controller was combined with the ANN to develop a future 

adaptive neural network (FANN) control. Simulation and experimental results show that the 

F ANN control has a better behavior when compared with PID control. Work of Curtiss was 

expanded by Jeannette et al. (1998) to test the predictive Neural Network (PNN) in a real 

building. More experiments were conducted to obtain good control of the hot water supply 

temperature using a predictive NN. Results for energy savings were not reported. 

A self-tuning control algorithm was developed by Ozsoy (1993). The algorithm combined 

the recursive parameter estimation method with control algorithms. The algorithm was 

applied to a single environmental space with an air heater, humidifier and ventilator system. 
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Simulation results showed that the algorithm had a robust behavior. Results for energy 

savings were not reported. 

Arima (1995) applied fuzzy logic and rough sets for heating and humidification controls. 

Experimental results showing better performance of fuzzy logic reasoning are presented. No 

information on how the fuzzy rule matrix was developed or how they were tuned is 

presented. 

Ying-guo Piao et al. (1995) and Arima et al. (1995) developed an FLC for controlling the 

temperature of hot water provided to a heating coil. Results for energy savings were not 

presented. 

So et al. (1995) introduced a controller using a system identification method. The controller 

was able to predict the new system status based on the past records and suggested optimal 

control actions. Simulation results showed that the proposed controller behaved better than a 

conventional PID controller when both controllers were used to control an AHU system. 

Energy savings of about 6.62% were demonstrated by using the proposed controller. 

A new pattern recognition adaptive controller that had the ability to self-tune PID parameters 

was described by Seem (1998). The controller was computationally efficient and provided 

near optimal performance. The controller was successfully used in many real buildings and 

showed good control of the HVAC system. Results for energy savings were not reported. 

An adaptive learning algorithm based on genetic algorithms (GAs) for automatic tuning of 

PID controllers in HVAC systems to achieve optimal performance was presented by Huang 

(1997). The simulation results showed that genetic algorithm based optimization procedures 

are useful for automatic tuning of PID controllers for HVAC systems, yielding minimum 

overshoot and minimum settling time. 
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Velez-Reyes and Arguello-Serrano (1999) presented a nonlinear controller with a thermal 

load estimator for the HVAC system. The controller was capable of identifying time varying 

thermal loads. This capability enabled the controller to have better control when the system 

endured a large thermal load disturbance. The controller was used in a HVAC system. Better 

control of the nonlinear controller was demonstrated by simulation results. Results for energy 

savings were not reported. 

Jian (2000) developed an Adaptive Neuro-Fuzzy (ANF) method for the supply air pressure 

control loop of a HVAC system. The ANF controller was developed to overcome the 

weakness of a well-tuned PID controller, which performs well around normal working 

points, but its tolerance to process parameter variations was severely affected due to the 

limitations of PID controllers for systems that have larger dead times or large parameter 

variations. No information on the neural network was made available. It was not clear if the 

controller used neural networks with multiple outputs for updating each membership function 

parameter in the fuzzy logic part. Also, the membership functions used in the fuzzy logic part 

were not specified. Also, it was not clear if the neural network was updating membership 

functions in every step or after a fixed number of steps. Simulation performances were 

compared without any experimental results. 

Osman (2000a and 2000b) developed a feedforward controller using a General Regression 

Neural Network (GRNN) for controlling the temperature in a laboratory room. This HVAC 

system used a VAV system. No details about the GRNN model and the data used for training 

were presented. Simulation results show that by adjusting damper position and supply flow 

rate, the required room temperature can be achieved. 

Wang Qing-Guo (2000) developed an auto-tuning multivariate controller for HVAC 

systems. In this paper, an advance PID auto-tuner for both single and multi-variable 

processes was developed with its application for controlling the zone temperature. No cost 

saving or energy consumption information was presented. No comparison of the PID auto-
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tuner to a conventional PID controller was made. Experiments were conducted in a HVAC 

pilot plant. 

Kolokotsa (2001) has developed an advance fuzzy proportional derivative (PD) controller for 

adjustment and preservation of air quality, thermal and visual comfort for buildings' 

occupants and achieved a reduction in energy consumption. The adaptive fuzzy PD controller 

adapts the input and output scaling factors and was based on a second order reference model. 

The buildings' response to the control signals was simulated using MATLAB/SIMULINK 

without any experimental results. 

Alcala (2003) presented a smartly tuned FLC for an HVAC application which was developed 

using genetic algorithms. The genetic algorithm was used to obtain better fuzzy rule sets. 

The problem considered was very particular and complex. Simulation and experimental 

results showed energy savings. No information related to the test conditions were presented 

and the tuning method used is very complex. 

More work is needed to develop AFLCs for HVAC applications that typically have long 

(about a minute or so) system time constants and periodically change operating modes (i.e. 

heating to cooling, using setback, etc.). Having a good adaptive or self-tuning algorithm for 

fuzzy logic controllers would increase their use, since considerable time is needed to 

manually tune FLCs. Properly tuned PLCs can be superior to conventional control 

algorithms (such as Proportional, Integral and Derivative (PID)), because they respond more 

quickly to setpoint and environmental changes and have minimal overshoot of the controlled 

variables. The controlled systems reach steady state faster with reduced oscillations about 

the set point. The quick response improves comfort and, since the systems spend less time in 

transient operation, energy consumption is reduced. The control logic can also implement 

electric demand and energy saving measures. 
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1.1.2 Summary 

The literature review in the areas of adaptive fuzzy logic and self tuning controller reveals 

adaptive techniques that have been applied to both HVAC unit control and system control 

along with the other industrial problems (Wallenberg 1991, Ling and Dexter, 1991, So et al., 

1995). Results for an adaptive controller show stable behavior and better performance 

compared with conventional control algorithms. 

Combining adaptive techniques with optimization techniques leads to minimum overshoot 

and minimum settling time, thus saving energy (Huang and Nelson, 1999). In recent years, 

adaptive techniques have been used successfully in simulation studies for HVAC operation. 

Several studies (So et al. 1995, Ling and Dexter, 1991, Wang and Jin, 2000) using adaptive 

control in the HVAC area have demonstrated that adaptive control leads to reduction in 

energy costs in comparison to conventional control strategies while still maintaining comfort 

conditions for building occupants. 

The literature indicates a lack of applications of simple adaptive techniques that are 

combined with optimal operation for cooling coil in HVAC systems. Furthermore, most of 

the current studies stop at the simulation level and do not present results for experiments and 

energy savings data. 

1.2 Project Objectives 

The objective of this project is to develop, implement, and test an adaptive fuzzy logic 

controller on one of the air handling units at the Iowa Energy Center's (IEC) Energy 

Resource Station (ERS) located in Ankeny, Iowa. 

1.3 The Adaptive FLC description 

Over the past couple of years, fuzzy logic has played an important role in the implementation 

of controllers for various processes. FLCs are effective for controlling complex and poorly 

defined processes as they embody the knowledge of human experts to achieve good control 

strategies. Adaptive fuzzy logic control systems have been designed for various dynamic 
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processes. In a PLC, however, it is difficult to construct good rule bases and membership 

functions. 

Some studies have been reported that use Genetic Algorithms (GAs) for the optimization of 

PLC performance by overcoming the above mentioned difficulties. Karr (1991) has used 

genetic algorithms to select good membership functions for a PLC that controlled a computer 

simulated cart-pole balancing problem. Genetic algorithms were used to alter the shape of 

fuzzy sets used in a given rule base in which each fuzzy label was coded as a 7-bit binary 

number. 

Recently, Gurocak et al. (1999), Park et al. (2000) have shown the use of genetic algorithms 

for tuning fuzzy logic controllers for the inverted pendulum problem. Kindel et al. (1994) 

used modified genetic algorithms for designing and optimizing fuzzy controllers for the cart 

pole system. The task was divided into rule base modification and tuning of fuzzy 

membership function shape. They used non-binary coding and coded the rule base as matrix 

type chromosomes instead of general gene type chromosomes. Borut et al. (1999) used 

genetic algorithms to tune 25 consequent parameters keeping the membership functions the 

same. The efficiency of this approached was verified and validated on a hydraulic control 

system. Park et al. (1995) used genetic algorithms for fine tuning the fuzzy logic controller. 

The effectiveness of this method was verified through a series of simulations for a water 

level control system. 

1.4 Proposed Adaptive Fuzzy Logic Controller - G A 

Figure 1.4-1 shows a schematic of a proposed adaptive fuzzy logic controller using genetic 

algorithms (AFLC-GA). In this project, Genetic Algorithms (GAs) are used to modify the 

fuzzy logic controller's rule matrix. Total RMS error between the supply air temperature 

(SAT) and supply air temperature set point (SATSPT) is calculated for each Fuzzy Rule 

Matrix (FRM). This total RMS error value is used to evaluate the performance of all the 

generated FRMs. FRMs that have better PLC performance are reproduced to find improved 

FRMs. Thus, with the repeated application of GAs, near-optimal fuzzy logic controllers can 
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be achieved (See Appendix E for details).All the programming required for PLC and GA was 

done using Matlab software (Matlab 2001). 

Control 
Action 

SAT 

Air Handling Unit 
(AHU) at the ERS 

Genetic Algorithms 
(To update Fuzzy 

Rule Matrix (FRM)) 

Fuzzy Logic Controller 
(To generate a control 

action for given e and d) 

Adaptive Part 
Updated 

FRM 

Data 

Figure 1.4-1: Proposed Adaptive Fuzzy Logic Controller - GA 

As shown in Figure 1.4-1, for a set of error (e) and derivative of error (d), a control signal 

will be generated by the FLC. Depending upon the control signal calculated using the current 

FRM; the chilled water valve position is altered thus changing the SAT. For the offline study, 

SAT values were calculated using a general regression neural network (GRNN) model for 

the cooling coil instead of the real Air Handling Unit block as illustrated in Figure 1.4-1. The 

GRNN model was also developed using Matlab's NN toolkit. After a specified number of 

iterations of the control cycle are completed, the total RMS error corresponding to the FRM 

being used is calculated. Similarly, the total RMS error for each FRM generated for the study 

is calculated to evaluate the FLC performance. 

Based on the total RMS error, all the generated FRMs are then sorted with the FRMs having 

minimum RMS error being best. After the sorting process, the two top most FRMs having 

minimum total RMS error are used for the reproduction of two new FRMs called offspring. 

The total RMS error is calculated for these offspring as mentioned above. Depending upon 

the total RMS error for these offspring namely, none, one or both the worst FRMs from the 

selected tournament (tournament is selecting either 4 or 7 FRMs randomly from the total 

generated FRMs) are replaced by the offspring FRMs. This process of generating new FRMs 
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(i.e. offspring) is continued for a pre-defined number of cycles, called generations. Thus, the 

best FRM is generated which results in a better performance of the FLC. The same method 

used for offline test was applied in real time test at the ERS to find a better FRM. 

1.5 Proposed Adaptive Fuzzy Logic Controller - ES 

Pham et al. (1994) proposed an evolutionary strategy (ES) design of an adaptive fuzzy logic 

controller for a process with time delays. An adaptive fuzzy logic controller incorporating a 

Smith predictor was designed to maintain performance during process changes. Simulation 

results demonstrated the effectiveness of this approach. 

Figure 1.5-1 shows a schematic of a proposed adaptive fuzzy logic controller using 

Evolutionary Strategies (ES). In this method, ES is used to evolve better fuzzy membership 

functions. The required program of FLC, GRNN model and ES was done using Matlab 

software. 

SAT Action 
^ ' 

Air Handling Unit 
(AHU) at the ERS 

Fuzzy Logic Controller 
(To generate a control 

action for given e and d) 

Evolutionary 
Strategy 

(To update Fuzzy 
Membership 
Functions) 

Adaptive Part 

i i 
Control 

Updated Fuzzy 
Membership 

Functions 

Data 

Figure 1.5-1: Proposed Adaptive Fuzzy Logic Controller - ES 

The ES technique is similar to the GA technique as explained in the previous section except 

that GAs work with many genes at a time and ESs work with only one gene at a time. The 

task for this research is to develop and implement an adaptive fuzzy control algorithm at the 

ERS. 



www.manaraa.com

12 

1.6 Plan of Work 

The plan for this research has been to develop and implement an adaptive fuzzy control 

algorithm at the ERS. The ERS is an excellent facility to use for testing and developing PLCs 

for controlling commercial HVAC systems. The ERS has two side-by-side air handling units 

with identical thermal loads. Each system is controlled by a computerized energy 

management and control system (EMCS). The EMC S s can be programmed to implement 

and compare control strategies, such as the fuzzy logic controllers on one air handling unit 

and other control strategies, such as a standard PID controller, on the second air handling 

unit. 

Tasks which are followed in this research are: 

1. Develop and implement a FLC at the ERS 

2. Compare performance of FLC with that of current control strategies 

3. Develop procedures for dealing with missing and erroneous data 

4. Develop and implement an AFLC at the ERS 

Task 1 - Develop and implement a FLC at the ERS 

For this task, a working fuzzy logic controller was developed, manually tuned, and used to 

control one of the air handling units. The control variables were selected and initial FLC 

development was done off-line. Then, real-time (online) experiments were conducted on one 

of the air handling units (AHU) to test the operation of the FLC. 

Task 2 - Compare performance of FLC to current control strategies 

The performance of a FLC was compared to the performance of the PIDL 

(proportional/integral/derivative loop) controller implemented by the EMCS at the ERS. The 

FLC developed in Task 1 was used to control one of the two identical air handling units and 

its operation and energy use were compared to the other one which had the PIDL controller. 

The use of the FLC was periodically switched from one air handling unit to the other to 

eliminate any bias in one unit over the other. The performance of both the systems in terms 
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of reduced energy usage, faster response time, reduced overshoot, and reduced oscillations 

was recorded and compared. 

Task 3 - Develop procedures for dealing with missing and erroneous data 

Most EMCS s have to deal with missing and/or erroneous data. This is caused by sensor 

malfunctions and failures or other problems within the computer control system. Poor sensor 

readings degrade the performance of any control system. There are two types of erroneous 

data: (1) complete failures and (2) minor drifting. The complete failures can easily be 

detected by readings that are out of range. Replacing missing and erroneous data with the 

previous correct value was studied. Also, in future work, Auto Associative Neural Networks 

will be studied as one of the tools to deal with minor drifting. 

Task 4 - Develop and implement an adaptive FLC at the ERS 

For this task, an adaptive FLC (AFLC) was developed to automatically tune itself for optimal 

performance using GA or ES. Once an adaptive FLC was developed, its performance was 

compared with the PIDL control strategy used at the ERS with each one controlling side-by-

side air handling units. Both the systems are compared based on the following evaluation 

parameters: 

1. Error (SAT deviation from the SATSPT) 

2. Energy usage 

3. Response time to setpoint and environmental changes 

4. Overshoot of the controlled variables, settling and rise time required 

5. Chilled water valve travel 

1.7 Outline of Contents 

Chapter 2 is a description of the experimental facility, including information related to 

building layout, air handling units, cooling coil and data acquisition system. A brief 

discussion of a bias study between the two systems is reported along with the uncertainty 

values for hydronic energy and actuator travel distance. A discussion of a chilled water valve 

position study is also presented. Chapter 3 discusses various performance indices used in this 
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study. Chapter 4 gives detailed information for the cooling coil model development using 

neural networks, general regression neural network and lump capacitance models. An 

introduction to fuzzy logic controllers and adaptive fuzzy logic controllers is discussed in 

Chapter 5. Experimental results for the manually tuned FLC and various cooling coil models 

are given in Chapter 6. Chapters 7 reports the results obtained for offline and real time tests 

for adaptive fuzzy logic performance using genetic algorithms and evolutionary strategies. 

Chapter 8 reports the results for real-time comparison tests between the adaptive fuzzy logic 

controller and a standard proportional, derivative and integral loop controller. Finally, 

conclusions, contributions, and recommendations of this study are given in Chapter 9 
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Chapter 2 Experimental Facility Description 

2.1 Introduction 

The Energy Resource Station (ERS) was used as the test facility to compare the AFLC to a 

conventional PID controller. The ERS was built to compare different energy efficiency 

measures and to record energy consumption. The ERS combines laboratory testing 

capabilities with real building characteristics and is capable of simultaneously testing two 

full-scale commercial HVAC systems side-by-side with identical thermal loadings. This 

method of performance testing emphasizes the importance of the entire HVAC system and 

the interactions between individual building elements. 

To perform side-by-side testing, the facility is equipped with three AHUs. AHU-1 serves the 

common areas of the building. The remaining AHUs serve the A and B Test Systems. AHUA 

and AHUB are identical. AHUA and AHUB each serve four zones which are identical in 

construction and thermal loads. A schematic of the ERS along with the location of each AHU 

and the zones are shown in Figure 2.1-1. Of the four zones for each AHU, three have external 

exposures and one sees only internal conditions. The A and B zones are mirror images of 

each other. The zones have the capability for identical internal thermal loads. 

The side-by-side zones and HVAC systems allow a conventional control methodology to be 

operated in one system, for example, the A-Test System, and a proposed control 

methodology to be operated in the other system, for example, the B-Test System. Because 

each test system has the identical loads (external and internal) and construction, the only 

difference in the tests should be the control methodologies. Hence, the energy consumption 

and other performance indices of the two test systems can be compared and the benefits of 

the proposed control methodology can be quantified. 
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AHU-A Mechanical Room AHU-B 

AHU-1 

Classroom Classroom 
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Media 
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Computer 
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South South 
Office 

Figure 2.1-1: Schematic of Energy Resource Station, Ankeny, Iowa. 

2.2 Thermal Loads 

Each zone is equipped with 2-stage baseboard electric heaters and overhead lighting. The 

baseboard electric heaters and lighting can be scheduled to simulate various usage patterns as 

shown in Table 2.2-1 and Table 2.2-2. These zones are equipped with 2-stage lighting that 

can be in one of three modes shown in Table 2.2-1 with the corresponding thermal load 

generated in each stage. Also zones are equipped with 2-stage baseboard heater that can be in 

one of three modes shown in Table 2.2-2 with the corresponding thermal load generated in 

each stage. The lighting and baseboard heater thermal load was used in this study. 
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Table 2.2-1 : Stages of lighting load 

Lighting 

Mode Stage Power 

1 2 (W) 

1 ON OFF 195 

2 OFF ON 390 

3 ON ON 585 

Table 2.2-2: Stages of baseboard heater thermal load 

Baseboard Heater 

Mode Stage Power 

1 2 (kW) 

1 OFF OFF 0 

2 ON OFF 1 

3 ON ON 2 

2.3 Air Handling Unit 

A schematic of the AHUs with the major components is shown in Figure 2.3-1. Major 

components shown are the supply air and return air fans, preheat, cooling, and heating coils, 

heating and cooling control valves, recirculated air, exhaust air, and outdoor air dampers, and 

the ducts to transfer the air to and from the conditioned spaces. The preheat coil was not used 

in this study. The equipment capacities for the components of the AHUs are listed in 

Appendix A. 

Instrumentation consisting of humidity, pressure, and temperature sensors, air flow stations, 

and electric power meters are available to monitor the operational characteristics of the 

AHUs. The accuracy of the sensors as stated by the sensor manufacturer are listed in 

Appendix A. 
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Figure 2.3-1: Schematic of Air Handling Unit (Wen 2003) 

Referring to Figure 2.3-1, outdoor air at temperature OAT enters the AHU through the 

outdoor air duct and mixes with recirculated air at temperature RAT to form mixed air at 

temperature MAT. The OAT, MAT and RAT are measured with average temperature arrays 

of 4 platinum 1000 Q RTD temperature probes connected to form a single average 1000 Q 

RTD input. The mixed air passes through the heating coil and cooling coil at supply flow rate 

of SACFM. The air passes through a cooling coil where heat is removed from the air. 

The cooling coil was designed for a nominal capacity of 140 kBtu/hr. The discharge air 

temperatures of the heating and cooling coils (HWCDAT and CHWCDAT) are measured 

with average temperature arrays of 4 platinum 1000 Q RTD temperature probes connected to 

form a single average 1000 £2 RTD input. The flow rate of chilled water through the cooling 

coils is controlled by varying the position of the three-way heating and cooling valves. 

The air is drawn through the supply fan. The speed of the supply fan is controlled with a 

variable frequency drive (VFD). The electrical power for the supply fan and VFD is 
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measured with an electric power transducer. The air flow rate of the supply air (SACFM) is 

measured at the supply air flow station and the supply air temperature (SAT) is measured 

with an RTD average temperature array. The humidity of the supply air (tpsa) is measure 

using a humidity probe. The supply air is distributed to the zones through the supply air duct. 

An Energy Management and Control System (EMCS) is a Johnson Controls Inc. (JCI) 

Metasys system (JCI, 1995) used to regulate the conditions within the AHU by providing 

signals to maintain SAT at the supply air temperature set-point (SATSPT). 

2.4 Cooling Plant 

The cooling plant consists of a nominal 10 ton air-cooled chiller, a 149 ton thermal energy 

storage (TES) unit, chilled water supplied from an outside source, pumps, necessary valves 

and piping to circulate chilled water through the HVAC components. The TES unit is not 

used as an energy storage device, but acts as a large capacitance that reduces the temperature 

oscillations of the chilled water supplied to the cooling coil. 

Instrumentation consisting of flow meters, immersion temperature probes, electric power 

meters, and pressure sensors are available to monitor the operational characteristics of the 

cooling plant. Equipment capacity for each of the components of the chilled water system is 

listed in Appendix A. The working fluid in the cooling plant is water with 15% ethylene 

glycol. 

Figure 2.4-1 shows a schematic of the cooling coils. The chilled water generated by the local 

chiller is supplied to the cooling coils in AHUA and B. The chilled water generated from the 

local chiller is allowed to pass through the TES unit, which is filled with water to stabilize 

the temperature fluctuations generated by the stage controlled local chiller. The various 

temperature probes are shown in Figure 2.4-1 measure the entering, leaving, and mixed water 

temperatures to cooling coil. A flow meter measure the flow of the chilled water through the 

cooling coils. 
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Figure 2.4-1: Schematic of Cooling Coils 

CHWC-EWT - Chilled Water Entering Temperature (°F) 

CHWC-LWT - Chilled Water Leaving Temperature (°F) 

CWC-MWT - Chilled Water Mixed Temperature (°F) 

EAT - Entering Air Temperature (°F) 

SAT - Supply Air Temperature (°F) 

2.5 Data Acquisition 

The data exchange between the Matlab program (Matlab 2001) and the EMCS is 

implemented using a network dynamic data exchange (DDE) (See Appendix B for details) 

protocol that is supplied by the EMCS manufacturer. 

The EMCS is a Johnson Controls Inc. (JCI) Metasys system (JCI 1995). For the 

communication between Matlab and Metasys, Metalink served as a gateway to get 

information from Matlab and then deliver it to the Metasys controller. Figure 2.5-1 illustrates 

Data Acquisition System. 
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Figure 2.5-1 : Data Acquisition System. 

For example when a request for chilled water valve position is made by the Matlab program, 

this request is communicated to Metasys controller via Metalink using the network DDE 

protocol. The Metasys controller acquires required information and is communicated to the 

Matlab program through Metalink using the network DDE protocol. Similarly when a need 

for change in chilled water valve position is required, the Matlab program communicates this 

need using a "poke" command on the network DDE protocol to the Metasys controller via 

Metalink. Once the information for change in the chilled water valve position is received, the 

Metasys controller executes the required action. 

The Matlab program requests values for required sensors, namely various temperatures, 

chilled water valve positions and damper positions, approximately after every 30 seconds, 

since little variation in time was observed for completion of each program cycle. One 

program cycle was defined as starting with the request to the Metasys system for data from 

the required sensors, obtain that data, calculate the error between SAT and SATSPT and then 

the derivative of error, calculate the FLC action to change the chilled water valve position, 

poke this action into the Metasys system to execute, calculate the value of the predicted SAT 

using different models, namely LCM, NN or GRNN models (to be defined later), and lastly 

storing all the values in a text file. Time variation in executing every request by Metasys 

system was observed due network traffic and calculation of control actions using the fuzzy 

logic program. All the data received from Metasys was stored using Matlab software in a text 

files. 
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2.6 Bias Study for System A and System B 

Even though test systems A and B were designed to be identical, there are always factors 

existing in the equipment, installation, and operation that cause the two systems to have 

different values for the performance indices when the same operation methodology is applied 

to both the systems. Before conducting the comparison tests, it was necessary to determine 

the bias between the A and B systems from energy, thermal comfort, and actuator travel 

distance points of view. It is desired to know: 

• The magnitudes of the differences between the performance indices (bias) for the A 

and B test systems when both systems are under the same operating conditions, and 

• The repeatability of the bias. 

Wen (2003) documented an extensive study for the bias test between the two systems at the 

ERS. A group of tests, called AOOM normalization tests (AOOMnorm), was developed to 

serve the purpose of verifying the bias between the A and B test systems. The AOOMnorm 

tests were configured so that the systems A and B were operated and controlled using the 

same conditions under PIDL control. Each AOOMnorm test lasted about one week. 

AOOMnorm was executed ten times to verify the bias for different weather conditions. 

Results for these tests are given in Table 2.6-1 and Table 2.6-2. 

From the results in Table 2.6-1 and Table 2.6-2, it is observed that there is a difference in the 

hydronic energy consumption and the actuator travel distance for both systems when using 

the same PIDL control strategy. System B consumed almost 7.5% more hydronic energy than 

System A and the chilled water valve movement on AHUA was almost 9% more than for 

AHUB, calculated after excluding the outliers. 

The uncertainties due to the measurement errors were also examined by Wen (2003). The 

uncertainties for the energy performance indices were less than 2% of the minimum 

performance indices value. The uncertainties for the ATD indices were less than 0.5% of the 

minimum performance indices value (Wen 2003). 
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Table 2.6-1: Performance Indices for Hydronic Energy in Cooling Tests (Wen 2003) 

Performance Indices for Hydronic Energy in Cooling Test (kBtu) 

AOOMnorm2.2 

Test Day AHUA AHUB 

% Difference 

(B-A)*100/B 

1 135.55 147.14 8.6 

2 154.01 168.34 9.3 

3 120.3 132.92 10.5 

AOOMnorm2.10 

1 70.79 73.64 4 

2 57.25 57.19 0.1 

3 84.32 89.58 6.2 

4 79.31 84.8 6.9 

Table 2.6-2: Performance Indices for Actuator Travel Distance in Cooling Tests 

(Wen 2003) 

Performance Indices for Actuator Travel Distance in Cooling 

Test (kBtu) 

AOOMnorm2.2 

Test Day AHUA AHUB 

% Difference 

(B-A)*100/B 

1 311 277 -12 

2 374 326 -15 

3 421 385 -9 

AOOMnorm2.10 

1 241 261 -9 

2 279 276 -1 

3 243 265 -9 

4 252 298 -18 
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2.7 Chilled Water Valve Position Study 

2.7.1 Introduction 

During the initial experimental test for the cooling coil at the ERS, there was evidence that 

the chilled water valve position which was being recorded may not have been the real valve 

position. Further this could result in significant errors for predicting SAT using LCM, NN or 

GRNN model. So the study of the chilled water valve position was conducted to obtain the 

chilled water valve characteristic curve. 

2.7.2 Commanded and Real Chilled Water Valve Position 

For this study, the valve position was changed from 0 to 100% open position in steps of 10% 

after every 50 minutes and then back from 100 to 0% open position. This cycle was repeated 

several times. The real valve position was recorded from the available feedback signal for 

every commanded valve position. Figure 2.7-1 shows the commanded and the real valve 

position for 0 - 100% open position and Table 2.7-1 shows variation in the commanded and 

the real valve position for 0 - 100% and 100 - 0% open position. 
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Figure 2.7-1: Commanded and real chilled water valve position 

Chilled Water Valve Position Study 

Commanded Valve Position 

Real Valve Position 
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For a commanded valve position less than 50% open, the real valve position was lower and 

for a commanded valve position more than 60% open, the real valve position was higher. 

Table 2.7-1: Commanded and real chilled water valve position 

Chilled Water Valve Position (% Open) 

Commanded Forward Reverse Average 

Difference 

IFor - Revl 

10 0 0 0 0 

20 11.8 12.4 12.1 0.6 

30 24.7 25.3 25 0.6 

40 37.4 38 37.7 0.6 

50 50.4 50.8 50.6 0.4 

60 63.2 63.8 63.5 0.6 

70 75.9 76.3 76.1 0.4 

80 
00 %

 89.3 89.05 0.5 

90 100 100 100 0 

100 100 100 100 0 

Commanded Vs Actual VLV Position 
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Figure 2.7-2: Commanded Vs actual chilled water valve position 

From the above study, it was observed that there was little hysteresis between the forward 

and reverse cycles. Also significant differences between commanded and real valve 
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positions were observed for lower and higher valve positions as shown in Figure 2.7-2. Due 

to these differences, the valve position predicted by FLC did not result in the right action. 

This also resulted in poor performance of the NN models. 

2.7.3 Chilled Water Flow through the Cooling Coil 

Using results obtained from the valve position study, little improvement in the FLC and NN 

model performance was observed, so further investigation was necessary. The chilled water 

flow through the cooling coil and chilled water valve position was studied. 

CHWCMWT 

CHWCLWT CHWCEWT 

Actuator 

Flow Meter 

Cooling Coil 

Entering Chill 
Water 

Leaving Chill 
Water 

Figure 2.7-3: Details for chilled water flow through cooling coil and bypass. 

Figure 2.7-3 shows the flow details through the cooling coil and bypass. Chilled water enters 

the system at CHWC-EWT (°F) and total flow of Qflow (gpm). Depending upon the chilled 

water valve position, the total flow is split as Qcoil (gpm) flowing through the cooling coil and 

Qbypass flowing through the bypass section. 

Qflow — Qcoil Qbypass » "• 2.7-1 

Applying the basic energy balance equation across the 3-way valve, 
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Qno* * S* CHWC-MWT = (L, * S * CHWC-LWT+ * CHWC-EWT ; ... 2.7-2 

where; 

CHWC-LWT = Chilled water leaving temperature from cooling coil (°F) 

CHWC-MWT = Chilled water mixed temperature (°F) 

cp = specific heat (Btu/lbm-°F) 

Above equations 2.7-1 and 2.7-2 can be solved to get: 

(CHWC-EWT - CHWC-LWT) 
Qfiow =Q bypass (CHWC-MWT - CHWC-LWT) 

Simplifying above equations 2.7-3 to get following ratio 

... 2.7-3 

Q coil 

'bypass 

(CHWC-EWT - CHWC-MWT) 

(CHWC-EWT - CHWC-LWT) 
... 2.7-4 

Thus using the equation 2.7-4 and knowing the temperatures, the ratio of the flow through 

the cooling coil to bypass was calculated for chilled water valve positions between 0 - 100% 

open in steps of 10%. 

Theoretically the ratio given in equation 2.7-4 should be equal to the ratio of percentage of 

chilled water valve position open to (100 - chilled water valve position open). Experiments 

with different chilled water valve positions were conducted. Figure 2.7-4 shows the ratio of 

flow through the cooling coil to the bypass. Experiments showed that the theoretical and 

experimental ratios were different. Theoretically, flow ratio given by equation 2.7-4 should 

not be greater than 1. But Figure 2.7-5 indicates flow ratio of greater than 1 and is due to 

uncertainly in reading temperatures. During the experiments, it was observed that, as the 

commanded valve position increases, the ratio of the flow through cooling coil to bypass got 

higher as expected but was not equal to the calculated theoretical ratio, shown in Table 2.7-2. 

These variations in the theoretical and experimental flow ratios for different valve positions 

lead for further investigation into the problem. 
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Chilled water valve position study 
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Figure 2.7-4: Flow ratio of chilled water through the cooling coils to bypass. 

Table 2.7-2: Flow ratio for different chilled water valve position 

Commanded Valve Position 

(% Open) 

Actual Valve 

Position 

(% Open) 

Flow ratio of chilled water 

through the cooling coils to 

bypass 

10 0 0.4365 

20 12.1 1.545 

30 25 18.32 

40 37.7 31.65 

50 50.6 49.42 

60 63.5 62.3 

70 76.1 78 

80 89.05 85.3 

90 100 96 

100 100 96 

Using the experimental results obtained in the previous section and shown in the Table 2.7-2, 

a relation between the commanded valve position and the real chilled water valve position is 

obtained as shown in Figure 2.7-5. 
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Chilled Water Valve Position Vs Commanded Chill Water Valve 
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Figure 2.7-5: Variation in the ratio for chilled water flow through cooling coil to bypass 

Using results shown in Figure 2.7-5, the following correlation was developed: 

Chilled Water 

Valve Position 
= (1.2341 * 

Commanded chilled 

water valve position 
- 15.239); ... 2.7-5 

Using the above correlation, the updated chilled water valve position is calculated. Following 

equation 2.7-5, 

if (chilled water valve position) > 100; 

then (chilled water valve position) = 100; ... 2.7-6 

if (chilled water valve position) < 0; 

then (chilled water valve position) = 0; ... 2.7-7 

Using the above equations 2.7-5, 2.7-6, and 2.7-7 in the flow calculations, better results for 

the NN models and LCMs were obtained. 

2.8 Summary 

The Energy Resource Station (ERS) was used as the test facility to compare the AFLC to the 

PID controller. The ERS combines laboratory testing capabilities with real building 
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characteristics and is capable of simultaneously testing two full-scale commercial HVAC 

systems side-by-side with identical thermal loadings. 

The data exchange between the Matlab program and EMCS was implemented using a 

network dynamic data exchange. Along with the system details, air handling unit, cooling 

coil, data acquisition, and a bias study between the two test systems were reviewed. 

The bias study between the System A and B from energy, thermal comfort, and actuator 

travel distance points of view was done by Wen (2003). The bias study showed that system B 

consumed almost 7.5% more hydronic energy than system A and the chilled water valve 

movement on AHUA was almost 9% more than for AHUB. The uncertainties for the energy 

performance indices were less than 2% of the minimum value. The uncertainties for the ATD 

indices were less than 0.5% of the minimum value 

In this chapter, details for the chilled water valve position study and chilled water flow 

through the coil study were explained. Initially, the variation in the commanded and real 

chilled water valve position was studied. Also, details for the study to find the variations in 

theoretical and real chilled water flow rate through the cooling coil for different chilled water 

valve positions was explained. An equation was obtained to find the corrected flow rate 

through the cooling coil for a given chilled water valve position and chilled water flow rate. 
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Chapter 3 Performance Indices 

3.1 Introduction 

In order to quantify and compare the performances of the Fuzzy Logic Controller (FLC) and 

the standard PID Loop (PIDL) controller, performance indices were developed. The 

performance indices used in this study are: 

In any comparison, the uncertainties for each performance index that are attributed to the 

errors in the measurements are required. The procedures used to calculate the uncertainties 

for the performance indices are introduced in Wen (2003). The two test systems, AHUA and 

AHUB, were designed and set up to be nearly identical. Experiments to compare the FLC 

and PIDL performances were performed with the FLC on one system and the PIDL on the 

other. The systems were switched for alternate test runs to remove any bias of one system 

over the other. The performance indices are discussed in this section and then used to present 

the results in later sections. 

3.1.1 Root Mean Square Error 

Performance of FLC was evaluated using the standard statistical measures of root mean 

square error (RMS error), which is defined as 

• Root Mean Square (RMS) Error 

• Controller performance parameters 

• Hydronic Energy consumed 

• Actuator travel distance 

^T(SAT-SATSPT)2 RMS error .. 3.1-1 

where, 

SAT = Supply Air Temperature (°F) 
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SATSPT = Supply Air Temperature Set-Point (°F) 

n = number of data patterns 

3.1.2 Controller Performance Parameters 

The controller performance was assessed using measurable variables. For control problems, 

where the aim is to keep a process-state variable at its specific set-point, the following 

performance related variables, as shown in Figure 3.1-1 are used. These variables are 

defined for a step change in conditions (the set point). 

Figure 3.1-1: Definition of Rise Time, Settling Time and Overshoot 

Rise Time: 

The rise time tr is the time it takes for the system to go from 10% to 90% of the step change. 

Settling Time: 

The settling time ts is the time it takes the system transients to decay to less than 1% of the 

step change. 

Magnitude of Overshoot: 

The overshoot Mp is the maximum amount the system overshoots its final value. 
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3.1.3 Hydronic Energy 
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EAT and EAH LAT and LAH 

Cooling Coil 

Figure 3.1-2: Details for AHU Cooling Coil Instrumentation 

This section deals with the energy balance across the cooling coil and provides details to 

calculate energy gain by air and energy loss by water. Since cooling coil are exposed to moist 

air, psychrometric properties are considered to analyze moist air conditions for the 

calculation of energy balance. Kuehn et al. (1998) showed that perfect gas relations can be 

used to calculate humidity ratio, enthalpy and specific volume of saturated air of moist air at 

standard atmospheric pressure for a temperature range of -60°F to 120°F with errors less than 

0.7%. 

The water vapor saturation pressure is required to determine different moist air properties. 

Hyland and Wexler (1983) developed a formula for finding water vapor saturation pressure 

over liquid water for temperature of 32°F to 392°F and is given by: 

P.«m=exp(Cs/EAT^+c,+c,/ EATconv+C|1* (EATCO]W)2+cl2* (EATconv)3+cl3* log(EATconv)) ... 3.1-2 
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where, 

Ptosin = water vapor saturation pressure, psia; 

EAT = temperature of air entering cooling coil, °F 

EAH = relative humidity of air entering cooling coil, 

EAT conv = EAT + 459.67; 

C8 = -1.0440397E+04; 

c9 = -1.1294650E+01 ; 

ClO = -2.7022355E-02; 

Cil = 1.2890360E-05; 

Cl2 =-2.4780681E-09; 

Cl3 = 6.5459673E+00; 

Moist air is considered as a mixture of dry air and 

relationship, which is given by: 

pV = nRTabs 

where; 

p = total mixture pressure 

P — Pda + Pwi 

Pda = partial pressure of dry air 

pro = partial pressure of water vapor 

V = total mixture volume 

n = nda + nw 

nda = number of moles of dry air 

nw = number of moles of water vapor 

R = universal gas constant, 1545.32 ft*lbf/lb mol*°R 

Tabs = absolute temperature, °R 

Also, pros is a function of temperature only and differs slightly from the vapor pressure of 

water in saturated moist air. The relative humidity (cp) is given by (ASHRAE F6, ASHRAE 

1987) 

water vapor obeying perfect gas 

... 3.1-3 
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Relative Humidity (>)=pMin/pmsin 

Thus, 

Pmm=P*Pwsm -3-1-4 

The total mixture pressure of moist air entering in the cooling coil is: 

pin = 14.67 + pfflin ...3.1-5 

where, 

pressure of dry air is taken as 14.67 psia, 

Thus Humidity Ratio (lbw/lbda) of entering moist air into the cooling coil is calculated as per 

ASHRAE F6 as: 

Wj, =0.62198 * Pmi/CPin-pwin) ... 3.1-6 

Now, using equation 32 from ASHRAE F6, enthalpy (BTU/Ibdryair) of entering moist air into 

the cooling coil is calculated as: 

hairin=0.24 * EAT+min * (1061 + 0.444 * EAT) ... 3.1-7 

Similarly, the enthalpy (BTU/Ibdryair) of leaving air from the cooling coil is calculated using 

following equations: 

P„1Sou,=exP( c 8 /LATconv + c ,+ c10* LATC011V + cM * (LATconv)2 + c,2 * (LATconv)3 + c]3 * log(LATC0nv )) 

... 3.1-8 

where, 

p(0soi,t =water vapor saturation pressure of air coming out from cooling coil, psia; 

LAT =temperature of air leaving cooling coil; °F 

LAH =relative humidity of air leaving cooling coil, 

LATconv = LAT + 459.67; 

Total mixture pressure of air leaving from the cooling coil is: 

Pou,= 14-67 + Pmsou, ...3.1-9 

where, 

pressure of dry air is taken as 14.67 psia, 
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Wou,= 0.62198 * Pw,u,/(poul - ...3.1-10 

ha,rou,=0-24 * LAT + coout * (1061 + 0.444 * LAT) ... 3.1-11 

With known hainn and hairout, rate of heat transferred into air qau- (BTU/hr) is calculated as: 

q*r = Q* (h*hn - hwmu,) * 60/V^, ... 3.1-12 

where, 

Q = volumetric flow rate of air, ftVmin and 

Vairout = specific volume of air leaving from cooling coil, ft3/lbda and is calculated using 

ASHRAE F6 equation 28. 

0.7543 * (LAT + 459.67) * (1 + 1.6078 * mout)™ v = 
airout (p V0.4898) 

... 3.1-13 

From recorded mixed water temperature (CHWC-MWT, °F), entering water temperature 

(CHWC-EWT, °F), flow rate of chilled water through the cooling coil mwater, (gpm) and with 

known 15% glycol in chilled water, heat transferred from water qwater (Btu/hr) is calculated 

as: 

1 waler 

63.98 * m„ (CHWC-MWT - CHWC-EWT) * 0.936 * 60 

7.48052 
... 3.1-14 

The uncertainties for the energy performance indices were less than 2% of the minimum 

performance index value (Wen 2003). 

3.1.4 Actuator Travel Distance 

Actuators (valve) movement plays an important role in building control and operation. 

Frequent variations of set points or faulty control algorithms yield more movement of 

actuators that eventually wear them out and result in actuator failures. Hence, the actuator 

travel distance (ATD) index is a performance index to evaluate the valve travel distance. The 

larger is the value of the ATD index, the more the actuator travels. Actuators that have large 

values of the ATD index are considered to have a high probability of failure. 
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The ATD index is defined as: 

£ IVLV(i)-VLV(i-l)l 

ATD=^ 
Vki 

ATD= ... 3.1-15 

where, 

VLV(i) 

VLV(i-l) 

ki 

ke 

= the control signal to the actuator at the current time step and 

= the control signal to the actuator at the previous time step 

- staring time step 

= ending time step 

Since actuators have a feedback signal, real actuator position was used for calculation of 

ATD. The uncertainties for the ATD indices were less than 0.5% of the minimum 

performance index value (Wen 2003). 

3.2 Summary 

In this chapter, various performance indices for comparison of two systems were defined. 

Various performance indices defined are the RMS error between the supply air temperature 

and supply air temperature setpoint, the hydronic energy used by the system, and the actuator 

travel distance. For hydronic energy calculations, an ASHRAE method was used. Also 

controller performance parameters were assessed using measurable variables. For control 

problems, where the aim is to keep a process-state variable at its specific set point, the rise 

time, settling time and overshoot values were used to compare the performance of each 

system. 
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Chapter 4 Cooling Coil Models 

4.1 Introduction 

The objective for developing a cooling coil model is to capture the dynamic response of the 

H VAC process and assist in designing a PLC. If the PLC could be used to control a model of 

the system, then the PLC might be trained quicker. Four different models were developed for 

this study: Neural Network, General Regression Neural Network, Adaptive Neural Network, 

and Lumped Capacitance models. 

4.2 Model using Neural Networks 

4.2.1 Introduction 

A Neural Network (NN) is a network of neurons having a local memory. Unidirectional 

connections exist between the neurons. Each connection carries a weight and a bias. They 

operate on the input/s they receive and produce an output/s depending on the weights and 

biases. These weights and biases are adjusted to minimize the error between the actual and 

predicted output. 

As shown in Figure 4.2-1, a NN is a black box which learns mapping of the inputs to the 

outputs. It does this by adjusting the neurons weights and biases using data available for 

training. Neural Networks have been proven to be successful for many complex problems for 

which hard and fast rules can not easily be applied. 

Outputs Inputs Neural 
Networks 

Figure 4.2-1: Neural Networks 

Matlab's NN toolbox was used to develop the cooling coil models. To create a NN model of 

the cooling coil, the following information must be specified about its architecture: 

1. Number of inputs 

2. Number of outputs 
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3. Number of hidden layers 

4. Number of neurons in each hidden layer 

5. Transfer function in each hidden layer 

6. Transfer function in the output layer 

7. Algorithm for adjusting weights and biases 

8. Performance function 

Once the basic NN model's architecture is prepared; training was done with available data. 

The NN used in this study had one hidden layer. The tansig transfer function was chosen as 

the activation function for the hidden layer, while the input and output layers used linear 

transfer function for activation (See Appendix D for details). 

4.2.2 Normalization 

The NN training process was made more efficient by normalizing the input data in a 

preprocessing step of the NN model development. The output was also normalized and used 

a postprocessing step to obtain the output data. 

Once the most appropriate raw input data has been selected, it was preprocessed to obtain 

better NN performance. Transformation and normalization are two widely used 

preprocessing methods. Transformation involves manipulating raw input data to create a 

single input to a network, while normalization is a transformation performed on a single 

input data to distribute it evenly and scale it into an acceptable range for the network. 

Data should be scaled within an input range for each neuron, which is typically between -1 to 

1 or zero to 1. Knowledge of the input domain is important in choosing preprocessing 

methods to highlight underlying features in the data, which can increase the network's ability 

to learn the association between inputs and outputs. 

In the present case, the actual data was normalized in the range from -1 to 1. So minimum 

normalized input data was -1 and the maximum was 1. 
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N ormalized Y alue=2 
(Value - Min Value) 

(Max Value - Min Value) 
...4.2-1 

For example, if minimum and maximum values for CHWC-MAT are set as 60 and 80 

degrees respectively, then the normalized value for CHWC-MAT of 72 degree is calculated 

as: 

72 - 60 
NormalizedValue=2 * 

8 0 - 6 0  
1 =0.2; ... 4.2-2 

Similarly if CHWC-MAT is 64 degrees, the normalized value is -0.6. All input values are 

normalized in a similar way. 

The output of a NN is obtained as a normalized value, to get real output, the output must be 

denormalized. For example, if the minimum and maximum value of a target is set as 65 and 

75 respectively and if the network normalized value output is 0, then corresponding 

denormalized value is calculated as: 

Denormalized 

Value 
(NNOutput + 1)H 

+ MinTarget Value; 

^ (MaxTargetValue - MinTargetValue) 

Denormalized Value = (0 + 1) * ^ ̂  + 65 = 70; 

... 4.2-3 

... 4.2-4 

Some rules of thumb when performing data normalization are: 

• Normalize all inputs and outputs. 

• Don't restrict to the same type of normalization for all inputs/outputs. 

• Use the same normalization method and maximum and minimum values for training 

and test data. 

• Make sure that normalization of output data is sufficiently reversible. 
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Once the network architecture has been selected and the inputs chosen and preprocessed, the 

NN is ready to be trained. 

4.2.3 Training of Neural Networks Model 

During the network training phase, the backpropagation algorithm was used to adjust weights 

and biases to minimize network error. A feedforward network architecture using a 

backpropagation algorithm was used for training as it provides fast and accurate model 

development (Curtiss 1993). A technique which involves performing computations backward 

through the network is called Backpropagation (See Appendix D for details). The default 

performance function for a feedforward NN is the root mean square error between the 

network outputs and the specified target values. 

Development of a NN model started with a study of the different parameters which affect the 

desired supply air temperature from the cooling coil. Initially following input parameters 

were used as inputs for NN model: 

1. Chilled Water Entering Temperature (CHWC-EWT); 

2. Chilled Water Leaving Temperature (CHWC-LWT); 

3. Chilled Water Mix Temperature (CHWC-MWT); 

4. Mixed Air Temperature (CHWC-MAT); 

5. Supply Air Flow Rate (SA-CFM); 

6. Chilled Water Coil Valve Position (CHWC-VLV); 

7. Chilled Water Flow Rate (CHWP-GPM) 

8. Supply Air Set Point (SAT-SPT); 

Using the above inputs, several different NN architectures obtained by varying the number of 

neurons in hidden layers and trying different training algorithms were trained with the 

available data to get predicted Supply Air Temperature (SATPRED) as an output. Performance 

of each NN was evaluated using the standard statistical measures of root mean square error 

(RMS error), which is defined as 
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RMSError = ](SATPRED - SAT) ... 4.2-5 

where, 

SATpred 

SAT 

= Predicted Supply Air Temperature by NN (°F) 

= Supply Air Temperature (°F) 

= number of data patterns in test set n 

Another study was conducted using eight inputs, namely: 

• Chilled Water Entering Temperature (CHWC-EWT); 

• Mixed Air Temperature (CHWC-MAT); 

• Supply Air Flow Rate (SA-CFM); 

• Chilled Water Coil Valve Position (CHWC-VLV); 

and their derivative information for single and two hidden layer NN models. Adding 

derivative inputs should help NN in mapping the time dependence of input parameters on the 

output. 

To simplify the network architecture and reduce training time and memory requirements a 

NN model was studied with four inputs, namely: 

1. Chilled Water Entering Temperature (CHWC-EWT) ; 

2. Mixed Air Temperature (CHWC-MAT); 

3. Supply Air Flow Rate (SA-CFM); 

4. Chilled Water Coil Valve Position (CHWC-VLV); 

These inputs are chosen based on their availability in a typical commercial building. 

4.2.4 Summary 

This section provided brief information of different NN models studied. The need for 

normalization and data preprocessing was explained. 
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4.3 Model using General Regression Neural Networks 

4.3.1 Introduction 

Another type of feedforward NN, namely General Regression Neural Networks (GRNN) was 

studied. The GRNN is a one pass learning algorithm that can be used for estimation of 

continuous variables and converges to the underlying regression surface. A GRNN captures 

the input-output regression characteristics of the system. The GRNN for this study is based 

on the Parzen window estimator (Parzen 1962) and was the first GRNN application done by 

Specht (1991). The principal advantages of the GRNN are its quick learning and fast 

convergence to an optimal regression surface as the number of samples becomes large. 

4.3.2 GRNN Theory (Specht 1991) 

The GRNN has been proposed as an alternative to statistical regression equations and 

conventional artificial neural-networks. GRNNs are memory-based feedforward networks 

based on the estimation of probability density functions. GRNNs feature fast training times, 

can model non-linear functions, and have been shown to perform well in noisy environments. 

The GRNN is theoretically based on the estimation of a probability density function from 

observed samples using Parzen window estimation (Specht 1991). The following is a brief 

description of the GRNN that illustrates its implementation for estimation of AHU subsystem 

process-variables. 

Assume that X and Y are the measured values for the variables x and y, respectively. If f(x, 

y) represents the known joint continuous probability density function, the expected value of y 

given X can be obtained from the following equation: 

J yf(X,y)dy 

E[ylX] = ^ 

| f(X,y)dy 

. 4.3-1 
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When the density function f(x,y) is not known, it can be estimated from sample data sets of x 

and y. Assuming that the density is continuous and the first partial derivatives of the function 

evaluated at any x are small, the probability estimator is 

f(X,Y) = 
1 

(P+1)TT(P+1)/2 2a,p+un 
1 vp 
-LexP 

i=l 

(X-XJ)T(X-XJ) 

2(f 
exp 

(Y-Y,y 

2o" 
... 4.3-2 

where Xi and Yi are the ith sample data point, n is the number of samples and p is the 

dimension of the vector variable x. 

A physical interpretation of the probability estimate f (X, Y) is that it assigns a sample 

probability of width a for each sample of Xi and Yi, and the probability estimate is the sum 

of those sample probabilities. 

Substituting equation 4.3-2 into equation 4.3-1, the expected value Y(X) given X can be 

calculated as 

Z^exp  
r-D2 A 

Y(X) = 
i=l , 2o \  

Z e xp 

4.3-3 

i=l , 2 (T/  

where Di is given by the distance function of the input space and calculated as: 

DMX-Xj)T(X-Xj)  . 4.3-4 
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Figure 4.3-1: GRNN Model Architecture (Specht 1991) 

The GRNN topology consists of four layers as shown in Figure 4.3-1. The primary advantage 

of the GRNN is the speed at which the network can be trained. Training a GRNN is 

performed in one pass. The training data (also referred to as reference data) Xi are simply 

copied into the pattern layer of the neural net. In the second layer, for a given X, the 

exponent based on the distance from X to each training data input Xi is computed and the 

product of the exponent value and the corresponding training data output Yi is also 

calculated. The summation layer has two nodes, termed A and B. The B node computes the 

summation of each exponential value weighted by the known output Yi, while the A node 

simply computes the summation of the exponents of the distances. The output layer simply 

divides B by A to produce the predicted output. The output layer is simply a weighted 

average of the training values close to the input values. The only adjustable parameter in a 

GRNN is the smoothing factor, s. The smoothing factor can be found through a simple and 

effective scheme known as the "Holdout" method (Specht 1991). 

4.3.3 GRNN Models 

To predict next sampling time SAT, an offline GRNN model was developed using 8 inputs, 

namely; 
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1. Chilled Water Entering Temperature (CHWC-EWT); 

2. Chilled Water Leaving Temperature (CHWC-LWT); 

3. Chilled Water Mix Temperature (CHWC-MWT); 

4. Chilled Water Flow Rate (CHWP-GPM) 

5. Mixed Air Temperature (CHWC-MAT); 

6. Supply Air Flow Rate (SACFM); 

7. Chilled Water Coil Valve Position (CHWC-VLV); 

8. Supply Air Set Point (SATSPT); 

The performance of this GRNN model was evaluated by calculating the RMS errors between 

SAT and predicted SAT value for all the data patterns. 

Offline testing of the GRNN model was performed using Matlab's Neural Network Toolkit. 

For offline testing of a GRNN model on unseen data resulted in higher RMS error. Previous 

work on NN (Curtiss 1996, Jeannette 1998, Osman 2000a, 2000b) showed that past 

information of output/s as an input provides better results. So, two other GRNN models 

(GRNN models II and III) using past output information for SAT were studied. GRNN 

model II used 18 inputs, namely the 8 inputs used in GRNN Model I and 10 time steps of 

past information for the SAT. GRNN model III was developed since it was though having 

derivative information of output for the past time steps would help GRNN mapping inputs to 

provide better output results. GRNN model III was almost similar to GRNN model II except 

GRNN model III used 10 time steps of past derivative information for the SAT. Table 4.3-1 

summarizes the GRNN model types. 

Table 4.3-1: GRNN Models 

GRNN Model Type Input Information 

GRNN Model I 8 inputs 

GRNN model II 8 inputs with 10 time steps of past information for the output 

GRNN model III 8 inputs with 10 time steps of past derivative information for 

the output 
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4.3.4 Summary 

In this section details of three GRNN models developed for cooling coil are discussed along 

with GRNN theory. The three GRNN models used different number of inputs 

4.4 Model using Adaptive Neural Networks 

4.4.1 Introduction 

To develop an adaptive NN model, an updating NN technique was proposed. The NN model 

developed had a feedforward architecture and was first trained off-line using training data 

that was obtained from the ERS. This NN model was then adaptively retrained off-line and 

then again on-line using an adaptive process in order to minimize the difference between 

SAT and SATPREd- Two different techniques namely, re-training and adaptive, were used for 

updating the NN models. 

In the re-training updating process, the network's weight and bias values are updated using 

all of the data for a run. This training was continued until the maximum number of epochs 

was reached, the performance goal was met, or a stopping condition of the function occurred. 

In the adaptive updating process, the network's weight and bias values are updated after each 

step, before the next step in the sequence is presented 

4.4.2 Summary 

In this section, brief information related to the adaptive NN models is discussed. Retraining 

and adaptive techniques are used for developing an adaptive NN model 

4.5 Model using Lumped Capacitance Method 

4.5.1 Introduction 

Limited tools are available to evaluate the performance of an installed chilled water cooling 

coil. To design a good control system, steady state and dynamic behavior of the chilled water 

cooling coil are required. 
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Clark (1985) studied the behavior of heating coils and applied lumped capacitance concepts 

to develop a dynamic model. But this model is neither completely understood for the time-

dependent coefficients used in the polynomial for the delay function nor experimentally 

validated. Moreover, application of this model for varying flow rates requires four constants 

to be varied along with the flow rate. Lebrun (1990) presented a dynamic model of chilled 

water cooling coils using the lumped capacitance concept. Starting with the steady state 

model, dynamic behavior is explained with a simple first order model using the dry and wet 

regimes. But this model needs improvements on the water side considering the transport 

delay. 

A wide range of heat exchanger models are available with varying complexities. But most of 

the models, Lebrun (1990), Stoecker (1975), need detail information about the coil 

construction, inlet condition for air and water, humidity ratios, air and water flow rates. The 

required information might not always be ready available. Moreover, these models may 

perform better in a limited range of operation and coil geometric parameters. 

This section presents a technique for modeling a cooling coil without condensation. The 

results are used for designing a better control system. This technique is based on the 

fundamental heat and mass transfer principles and equations that are modified to lump all the 

geometric parameters of a cooling coil into characteristic parameters and to use Genetic 

Algorithms (GAs) to find these characteristic parameters which are the overall heat 

transfer/area coefficient (UA), two chilled water cooling coil valve constants, air flow 

constant, thermal time constant for air, and thermal time constant for water. 

4.5.2 Lump Capacitance Model Development 

The Lump Capacitance Model (LCM) for chilled water cooling coil (CC) was developed 

with two objectives: first, to use in the development of a control system and, second, to 

investigate CC performance for different operating conditions. Non-linear characteristics of 

CCs are shown in the studies conducted by Clark (1985) and Shavit (1982). Existing control 

models are very complex, non-linear and need detailed information about the CC. This 

creates difficulties in the real-time application of a model. The model developed for this 



www.manaraa.com

49 

study is to be trained using operating data for a specific cooling coil. Enough parameters are 

needed to provide a good model while not having too many parameters to make the model 

difficult to train. 

CHWC-LWT CHWC-EWT 

CHWC-EWT 

Actuator 

Flow Meter 

Entering Chill 
Water 

Leaving Chill 
Water 

Cooling Coil 

Figure 4.5-1: Schematic of Cooling Coil (CC) 

CHWC-EWT = entering chilled water temperature into the cooling coils (°F) 

CHWC-LWT = leaving chilled water temperature from the cooling coils (°F) 

CHWC-MWT = mixed chilled water temperature (°F) 

EAT = entering air temperature (°F) 

SAT = supply air temperature (°F) 

CC = Cooling Coil 

Schematic of the CC is shown in Figure 4.5-1. The chilled water entering the CC either 

passes through the CC or through the bypass depending upon the three-way valve position. 

The three-way valve controls the volume of chilled water passing through the CC. Chilled 

water enters the CC at CHWC-EWT. Due to heat transfer with the entering air (EAT) in the 

CC, the temperature of chilled water increases and it leaves the CC at CHWC-LWT. The 
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leaving chilled water mixes with the bypass chilled water and is then returned to storage tank 

at CHWC-MWT. Air enters the CC at EAT and leaves at SAT. 

This model uses an approximate equation for effectiveness (e) as a function of number of 

transfer units (NTU) and heat capacity ratio (Cr) to determine steady state water and air 

temperatures for a cross-flow heat exchanger with both fluids unmixed (Incropera 1996). 

NTU = UA/Cmin; ... 4.5-1 

where, 

UA = constant value of overall heat transfer coefficient area product; 

Cmin = minimum capacity rate (J/K) of air (Ca) or water (Cw); 

... 4.5-2 

Cw=r<  *C„*;  ...4.5-3 

Cpa = specific heat of air; (J/KgK) 

CPw = specific heat of water; (J/KgK) 

ma = mass flow rate of air; (kg/s) 

= CFM * AFC; 

CFM = Supply Air Flow Rate; (cfm) 

AFC = Air Flow constant; 

mw = mass flow rate of water; (kg/s) 

... 4.5-4 

= chilled water valve position * VLV c; 

VLVC = chilled water valve position constant; 

... 4.5-5 

= 1 -exp(( l/Cr)*(NTlf-)*(exp(-Q *( NTU* ̂ ))-1)); ... 4.5-6 

Also, effectiveness can be calculated as: 

i fC„<Cw 
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8 
(EAT-SATJ 

... 4.5-7 
(EAT - CHWC-EWT) 

i fCw <Ca 

_ (CHWC-LWTss - CHWC-EWT) 
8 ~ (EAT - CHWC-EWT) 

... 4.5-8 

where, 

SAT* = Steady state supply air temperature; (°F) and 

CHWC-LWTSS = Steady state leaving chilled water temperature; (°F) 

Depending upon whether the minimum value of heat capacity rate is for water or air, using 

appropriate equations 4.5-9 and 4.5-11 or 4.5-13 and 4.5-15 steady state water and air outlet 

temperatures are calculated (Incropera 1996). Using water and air side thermal time constant 

values, which are found using G As, water and air outlet temperatures are calculated as given 

in equations 4.5-10 & 4.5-12 or 4.5-14 & 4.5-16 respectively. 

i fCw<Ca 

CHWC-LWT^ = CHWC-EWT+s*(EAT - CHWC-EWT); ... 4.5-9 

CHWC-LWTpred= (CHWC-LWT - CHWC-LWTJ * exp -
Time Step 

+ CHWC-LWTSS 

...4.5-10 

(CHWC-LWTSS - CHWC-EWT) ; ...4.5-11 

SATPRED = (SAT - SAT„ ) » exp .I^ÎEE 
ca 

+ SAT,,; ... 4.5-12 

i fCa<Cw 

SATss = EAT - e * (EAT - CHWC-EWT); .4.5-13 
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SATPRED= (SAT - S AT, J * exp 
Time Step 

+ SAT ; ... 4.5-14 

CHWC-LWTSS =CHWC-EWT - * (SATss - EAT); ...4.5-15 

CHWC-LWTpred= (CHWC-LWT - CHWC-LWT, J * exp 
Time Step 

+ CHWC-LWT ; 

... 4.5-16 

where, 

Time Step = Time duration between each reading; (seconds) 

Tcw = Thermal time constant for water loop; (seconds) and 

Tca = Thermal time constant for air loop; (seconds) 

Thus, if UA is assumed to be constant and finding values of AFc, VLVc, Tcw and Tca, 

SATPRED value is calculated. Figure 4.5-2 shows the various steps followed to calculate 

SATPRED and various constants used in the equations for the calculations. 
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No Count < No. 
of Data Points 

Yes 

No 
If Ca < Cw 

Yes 

Count = Count + 1 

Calculate RMS Error 

Find NTU and 
effectiveness values 

Find Cmin 
Between Ca and Cw 

Record constants used 
and RMSHrmr value 

Update SATpred and 
CHWC-LWT 

Cïet UA. AF„VLV,. T, ;I  

and T;.W 

Calculate EATpred and 
CHWC-LWTpred 

Calculate CHWC-LWTPREd 
and EATpred 

Figure 4.5-2: Steps in development of LCM 
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To improve the LCM, the constant values in the model were obtained using G As. The 

performance of each set of constant values was compared based on the RMS error value 

obtained for those sets. The RMS error is the root mean square error between SAT and 

SAT pRED-

SAT and CHWC-LWT are updated by SATPREd and CHWC-LWTPRED respectively for the 

next iteration. 

Thus, lower RMS error is better. For every set of constants, the RMS error value was 

calculated and recorded along with the constants used. GA is a search tool used to find the 

optimal values of the five constants, namely; UA, AFC, VLVC, Tca and Tcw, to get minimum 

RMS error. Figure 4.5-3 shows a GA flow chart. 

To implement this problem using G As, (See Appendix F for more information on G As), the 

constants were represented by defining 60-bit binary digit genes which corresponded to the 

five constants, namely, UA, AFC, VLVC, Tca and Tcw. The first set of 12 bits corresponded to 

a UA value, second set with AFC, third set with VLVC, fourth set with Tca and fifth set with 

Tcw. Using 12 digits for each constant provided a resolution of 1/212 or 0.000244. All the 

constants were optimized within a specific range of pre-specified values. The ranges for these 

pre-specified values were selected based on the results obtained from previous experiments. 

X(SAT-SATPRED) RMS error ...4.5-17 

where, 

SAT = Value of SAT from the experimental data used 

= Value of SAT calculated by LCM 

= number of data points 

SATpred 

n 
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Generation < Max 
Generation? ^ 

Elitist Strategies 

Initialization 

Fitness Calculation 

Reproduction 

Mutation 

Crossover 

Problem Representation 

Generation = Generation + 1 

Record constants used 
and RMS error value 

Get UA, AFC,VLVC, Tca 

and Tcw 

Using 
Lump Capacitance Model 

Calculate RMS Error 

Figure 4.5-3: Flow chart to find optimal values of constants used in LCM 

Different GA techniques, namely; single and two point crossovers, single and two point 

mutations and tournament sizes of 4 and 7 were studied. The best configuration of all the 
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studied techniques was representing the constants with 60 binary digits and using two point 

crossover; two point mutations, and a tournament size of 4. This configuration was used to 

develop the lump capacitance model for this study. 

Using results from the chilled water valve position study, the chilled water flow through the 

valve can be modeled as: 

mw = (1.0572*chilled water valve position) - VLVC; ...4.5-18 

The updated equation, obtained from the flow through the chilled water valve for various 

valve positions, for the chilled water flow through the valve could be modeled as: 

mw =(1.0184* chilled water valve position) - VL Vc ; ...4.5-19 

A further generalization of equation 4.5-19 is: 

mw = (VLVca*chilled water valve position) - VLVcb; ...4.5-20 

where, 

VLVca and VLVcb are chilled water flow constants 

Thus using above equations, namely 4.5-5, 4.5-18, 4.5-19, and 4.5-20, four different LCMs 

for SATpred studied were: 

LCM I 

This LCM used GAs to find values of UA, AFc VLVc, Tcw and Tca. A linear relationship 

between flow through the valve and chilled water valve position was assumed and is given in 

4.5-5. 

LCM II 

This LCM used the corrected equation to find the mass flow rate of chilled water. GAs were 

used to find values of UA, AFc, Tcw, Tca and VLVc for equation 4.5-18. 

LCM III 

This LCM used the updated equation to find the mass flow rate of chilled water. GAs were 

used to find values of UA, AFc, Tcw, Tca and VLVc for equation 4.5-19. 
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LCM IV 

This LCM used GAs to find the values of UA, AFc, Tew, Tea, VLVea and VLVeb for 

equation 4.5-20. 

For all the lump capacitance models, the same data and GA technique were used to find 

optimal values for the constants. Results are discussed later. 

4.5.3 Summary 

In this section, basics for the Lump Capacitance model are discussed. The detail information 

of different lump capacitance models developed along with the equations are given. Also the 

application of Genetic Algorithms for finding the constants used in different equations used 

in the lump capacitance model are briefly explained. 

4.6 Summary 

In this chapter, different models for predicting SAT using Neural Networks, General 

Regression Neural Networks and Lump capacitance technique were discussed. The 

normalization process and need data preprocessing were explained. Also, adaptive NN 

models were briefly discussed. Different LCMs for predicting SAT were explained. 
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Chapter 5 Development of a Fuzzy Logic Controller 

The FLC was developed and implemented on both Air Handling Unit A (AHUA) and Air 

Handling Unit B (AHUB) at the Iowa Energy Center's Energy Resource Station (ERS) in 

Ankeny, Iowa. The FLC was developed using Matlab software. 

AHUA and AHUB at the ERS are controlled using a Johnson Controls Metasys system. The 

communication between the Matlab program and the Metasys system was successfully 

implemented using Direct Data Exchange (DDE) functions. Appendix B provides more 

information about some of the DDE commands that were used in this work. 

5.1 Basics of Fuzzy Logic Controller 

Initially, the FLC was used to control the chilled water coil valve position on AHUA while 

the standard PID control was used on AHUB. For implementation of the FLC, two inputs are 

needed, namely error (e, °F) and derivative of error (d, °F/second) to provide a control signal 

(u, % change in chilled water valve position) for the chilled water coil valve position. The 

error is the difference between the supply air temperature (SAT) and supply air temperature 

set point (SATSPT) while the derivative of error is the rate of change of error with respect to 

the sampling period, de/dt. 

5.1.1 Fuzzification 

For the first implementation of the FLC, the error and derivative were divided into 7 fuzzy 

classes as given below: 

NL = Negative Large, 

NM = Negative Medium, 

NS = Negative Small, 

ZE = Zero, 

PS = Positive Small, 

PM = Positive Medium, 

PL = Positive Large 
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Figure 5.1-1, shows the fuzzy membership function (FMF) (going from zero to one on the 

vertical axis) of the fuzzy variable for various values of error. Figure 5.1-2, shows the FMF 

(going from zero to one on the vertical axis) of the fuzzy variable for various values of the 

derivative of the error. Figure 5.1-3, shows the FMF (going from zero to one on the vertical 

axis) of the fuzzy variable for various values of the output. 

e 

NL PS PM PL NS ZE NM 

6 6 -10 4 - 2 - 1 0 1 2  4  10 
Error (°F) 

Figure 5.1-1: Fuzzy Membership Function (FMF) for Error 

NL PS PM PL NS ZE NM 

6 6 10 -10 4 - 2 - 1 0 1 2  4  
Derivative (°F/s) 

Figure 5.1-2: Fuzzy Membership Function for Derivative of Error 

û 

PS Z3 NS PM PL NM NL 

0.2 0.4 0.6 -0.6 -0.4 -1.0 -0.2 0 1.0 
Change in Valve Position (% open) 

Figure 5.1-3: Fuzzy Membership Function for Control Signal 
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5.1.2 Fuzzy Rule Matrix 

The initial fuzzy rule matrix (FRM) is shown in Table 5.1-1. 

Table 5.1-1: Default 7x7 Fuzzy Rule Matrix 

Error (e) 

Derivative (d) 

Error (e) NL NM MS ZE PS PM PL 

NL NL NL NL NL NM NS ZE 

NM NL NL NL NM NS ZE PS 

NS NL NL NM NS ZE PS PM 

ZE NL NM NS ZE PS PM PL 

PS NM NS ZE PS PM PL PL 

PM NS ZE PS PM PL PL PL 

PI. ZE PS PM PL PL PL PL 

The rule matrix gives the control action for various values of the error and derivative. This 

matrix represents 49 rules that are used by the FLC. Fuzzy logic allows more than one rule to 

be active at a time based on the membership of each rule for a particular error and derivative. 

To implement a FLC, the error and derivative of error are fuzzified. Using these fuzzified 

inputs and FRM, the fuzzy control outputs are determined (See Appendix C for details). The 

fuzzy outputs are defuzzified to obtain a real control signal. 

5.1.3 Defuzzification Methods 

Defuzzification is the process of converting the various fuzzy output values into one real 

output for the controller. There are several different methods used for defuzzification. In this 

study, the centroid method is used. It calculates and returns the center of gravity for the 

aggregated fuzzy outputs. (See Appendix C for details). 

Some criteria for defuzzification methods are: 

1. Continuity : A small change in the input variable should not result in a large change in 

the output. 
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2. Disambiguity : The defuzzification method should be clear and should not create any 

ambiguity as sometimes is observed in the Center of Largest Area defuzzification 

method. 

3. Computational Complexity: This criterion is particularly important in practical 

applications. 

4. The defuzzification methods must be clear and should provide correct results. 

Once the communication between Matlab and Metasys was implemented using DDE 

commands, experiments were performed to confirm that the FLC could control the chilled 

water valve position to maintain the supply air temperature at its setpoint. Experiments 

demonstrated that the FLC could control the chilled water valve position using the default 49 

rules without any tuning. 

5.2 Manual Tuning of FLC 

In order to improve the FLC performance, tuning of the FLC is necessary. Manual tuning of 

the FLC was done using the following methods: 

• Modifying Fuzzy Rule Matrix 

• Modifying specific rules in the Fuzzy Rule Matrix 

• Modifying shape of Fuzzy Membership Functions and 

• Modifying Scaling Factors 

5.2.1 Modifying FRM 

The fuzzy rule matrix provides control action for a given set of error and derivative of error 

values. For the same set of values, a larger fuzzy rule matrix could provide finer control 

action depending upon the fuzzy rule matrix design. 

The default fuzzy rule matrix of 49 rules resulted in unacceptably long settling times. Similar 

results were obtained after the fuzzy rule matrix was modified manually. Hence, a 9 by 9 

fuzzy rule matrix was tried to get better control of the process. The 9 by 9 fuzzy rule matrix 

used two additional elements in error, derivative of error, and output fuzzy sets, namely: 
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NVS = Negative Very Small 

PVS = Positive Very Small 

The new rule matrix is shown in Table 5.2-1. 

Table 5.2-1: Default 9x9 Fuzzy Rule Matrix (9 by 9) 

Error le) Derivative (d) 

NL NM NS ATVS ZE PVS PS PM PL 

NL NL NL NL NL NL NM NS NVS ZE 

NM NL NL NL NL NM NS NVS ZE PVS 

NS NL NL NL NM NS NVS ZE PVS PS 

NVS NL NL NM NS NVS ZE PVS PS PM 

ZE NL NM NS NVS ZE PVS PS PM PL 

PVS NM NS NVS ZE PVS PS PM PL PL 

PS NS NVS ZE PVS PS PM PL PL PL 

PM NVS ZE PVS PS PM PL PL PL PL 

PL ZE PVS PS PM PL PL PL PL PL 

More experiments were performed using the 81 fuzzy rules defined by the 9 by 9 rule matrix 

shown in Table 5.2-1. It was observed that the FL output was always higher, thus suggesting 

a need for more tuning. 

In order to achieve faster response and increase stability of FLC, two more elements were 

added to error, derivative of error, and output fuzzy sets, namely: 

NT = Negative Tiny 

PT = Positive Tiny 
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The new 11 by 11 rule matrix, with 121 rules is shown in Table 5.2-2. 

Table 5.2-2: Default 11x11 Fuzzy Rule Matrix 

Error Derivative (d) 

( C )  NL NM MS NT ZE PT PVS PS PM PL 

N I .  NL NL NL NL NL NL NM NS NVS NT ZE 

NM NL NL NL NL NL NM NS NVS NT ZE PT 

NS NL NL NL NL NM NS NVS NT ZE PT PVS 

NVS NL NL NL NM NS NVS NT ZE PT PVS PS 

N I ­ NL NL NM NS NVS NT ZE PT PVS PS PM 

SI-: NL NM NS NVS NT ZE PT PVS PS PM PL 

IT NM NS NVS NT ZE PT PVS PS PM PL PL 

PVS NS NVS NT ZE PT PVS PS PM PL PL PL 

PS NVS NT ZE PT PVS PS PM PL PL PL PL 

PM ! NT ZE PT PVS PS PM PL PL PL PL PL 

PI. 1 ZE PT PVS PS PM PL PL PL PL PL PL 

Using fuzzy rules shown in Table 5.2-3 reasonable results were obtained, but there was still a 

need for more tuning. 

5.2.2 Modifying Selective Rule in the FRM 

The performance of the FLC may be improved by modifying a specific rule from the default 

fuzzy rule matrix. From the real-time test results obtained for the previous 11 by 11 fuzzy 

rule configuration, it was observed that when the error was PT and the derivative of error was 

PT, a larger action was taken than required. Similarly, there were other rules for which the 

fuzzy logic output did not result in the desired action. Those particular outputs were 

modified. The modified fuzzy rule set is given in the Table 5.2-3 with the modifications from 

the standard rule matrix highlighted in grey color cells. Results obtained using this modified 

fuzzy rule set suggested still more need for tuning. 
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Table 5.2-3: Modified Fuzzy Logic Rule Matrix (11 by 11) (Modified cells highlighted) 

Error Derivative (d) 

( c )  NL NM MS MV5 NT ZE PT PVS PS PM PL 

NL NL NL NL NL NL NL NM NS NVS NT ZE 

NM. NL NL NL NL NL NM NS NVS NT ZE PT 

NS NL NL NL NL NM NS NVS NT ZE PT PVS 

NVS NL NL NL NM NS NVS NT ZE PT PVS PS 

NT NL NL NM NS NT NT ZE PT PVS PS PM 

ZE NL NM NS NT NT ZE PT PVS PS PM PL 

IT NM NS NVS NT ZE PT PT PS PM PL PL 

PVS NS NVS NT ZE PT PT PS PM PL PL PL 

PS NVS NT ZE PT PVS PS PM PL PL PL PL 

PM NT ZE PT PVS PS PM PL PL PL PL PL 

PL ZE PT PVS PS PM PL PL PL PL PL PL 

5.2.3 Modifying Shape of Fuzzy Membership Functions: 

Modifying the shapes of fuzzy membership functions alters the fuzzy logic output. Increasing 

the number of fuzzy rules near the center increases sensitivity of the controller to small 

values of the inputs as shown in Figure 5.2-1. Modifying the shape of fuzzy membership 

functions also has some effect on the controller's output within the specific region of the 

input range. 
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I 
Increased Sensitivity around zero 

Figure 5.2-1: Modifying shapes of the fuzzy membership functions 

5.2.4 Modifying Scaling Factor 

A Scaling Factor (SF) can be used to scale the input variables before the fuzzification 

process. A SF can also be used to scale the output variable after the defuzzification process. 

Figure 5.2-2 shows the effect of modifying the scaling factor for fuzzy membership functions 

for the error and derivative of error. For example, the input value of 1 is classified in PL 

fuzzy membership function when the scaling factor is 1. Same input value, 1, is classified in 

PM fuzzy membership function when the scaling factor is 2 and in ZE fuzzy membership 

function when the scaling factor is 10. This changes the sensitivity of the controller to the 

inputs. 

Use of the scaling factor helps in manipulating input and output variables and it modifies the 

controller's output uniformly across the input range. 
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Figure 5.2-2: Effect of modifying Scaling Factor 

5.3 Adaptive Fuzzy Logic Controller 

5.3.1 Introduction 

Most of the real world processes that require automatic control are nonlinear in nature and 

their parameter values alter as the operating point changes. A typical controller can only be 

tuned to give good performance at a particular operating point or for a limited period of time. 

These controllers need to be retuned if the operating point changes. This necessity to retune 

has driven the need for adaptive controllers that can automatically retune themselves to 

match the changes made in the operating point and/or current process characteristics. 

An adaptive controller contains two components, namely a process monitoring component 

and a self adaptation mechanism. In the process monitoring component, changes in the 

process characteristics are detected and performance of the controller is measured. In the 

adaptation mechanism, process monitoring information is used to update the controller 

parameters and adapt the controller to the changes in the process. 

A FLC contains a number of parameters that can be altered to modify the controller 

performance. These parameters are: 

1. Fuzzy Rule Matrix 

2. Scaling Factor 
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3. Shape of Fuzzy Membership Functions 

5.3.2 Adaptation Mechanism 

The adaptation mechanism must modify the controller parameters to improve the controller 

performance on the basis of the output from the performance indices. Adaptation 

mechanisms for FLC s can be classified according to the parameters being adjusted. One set 

of parameters which can be adjusted is the scaling factors. Figure 5.2-2 shows the effect of 

modifying the scaling factor for fuzzy membership functions for the error and derivative of 

error. Figure 5.2-2 shows now sensitivity of the controller is changed for the input values. 

Following Figure 5.2-2, if, for example, the input value is multiplied by a scaling factor of 2, 

the input is mapped from -2 to 2. Similarly, if the scaling factor is 10, the input is mapped to 

the range from -10 to 10. Changing the scaling factor changes the sensitivity of the controller 

to the input parameters. Use of the scaling factor helps in manipulating input and output 

variables and it modifies the controller's output uniformly across the input range. 

Another mechanism to adjust the sensitivity is to modify the shapes of the fuzzy membership 

function. An example where the fuzzy membership functions are altered to increase the 

sensitivity of the controller to small values of the inputs is shown in Figure 5.2-1. 

Modifying scaling factor alters sensitivity uniformly across the entire operating region of 

input/output whereas changing the fuzzy membership functions modifies sensitivity within 

specific region of the range of input/output. 

This adaptive mechanism is to modify the FRM. Modifying FRM is altering fuzzy rules and 

thereby the action taken by FLC. 

5.3.2.1 Adaptive Mechanism by Modifying Scaling Factor and Fuzzy Membership Functions 

Evolutionary Strategies (ES) were used to study the adaptive mechanism for modifying 

scaling factors and fuzzy membership functions. Evolutionary Strategies (ES) are stochastic 

search methods that mimic the metaphor of natural biological evolution (See Appendix G for 
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details). Evolutionary Strategies operate on a single parent gene which produces a single 

offspring gene of potential solutions. Applying the principle of survival of the fittest 

between the parent and offspring will produce better and better approximations to a solution. 

Figure 5.3-1 shows a flow chart for ES. 

At each generation, a new offspring gene is created by mutating the parent gene. Mutation is 

a operation which promotes the exploration of new regions in the search space and ensures 

that all the points in the solution space have a chance of being searched. Since binary 

numbers are used in the representation system, mutation was performed by replacing a few 

bits from the original gene with the randomly generated binary numbers. 

The RMS error for the offspring is then computed. If the RMS error (RMS error0) value for 

this offspring is less than that for the parent (RMS error?), then the parent gene is replaced by 

offspring gene. Then, for the next generation, this offspring gene will be the parent gene. 

This cycle is iterated until the optimization criteria or the predefined number of generations is 

reached. If RMS error value for offspring gene is higher than that for parent, offspring gene 

is discarded. 

This process of generating offspring gene leads to the evolution of populations of individuals 

that are better suited to their environment than the individuals that they were created from, 

just as in natural adaptation. 
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Figure 5.3-1: Flow chart for Evolutionary Strategies 

ES was used to modify two different FLC parameters, namely; 

1. evolving scaling factors, and 

2. evolving mapping factors which define fuzzy membership functions in error, 

derivative of error and control signal 

5.3.3 Use of ES for Evolving Scaling Factor: 

One of the techniques using ES for development of an adaptive FLC was evolving scaling 

factors to get better FLC performance. Using ES techniques, real-time tests were conducted 
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to develop an adaptive FLC by evolving scaling factors. Figure 5.3-2 shows the flow chart 

for evolving the scaling factors. 

Yes 

No 

No 

Yes 

Generate New Gene 

Replace I'aivni tvne 

Best Solution 

Parent Gene 

Problem Representation 

Calculate SFerror, SFderixalive 
of error and SFcontrol signal 

Figure 5.3-2: Flow chart for evolving scaling factor using ES 

Problem Representation 

In this case, a 12 bit binary number was evolved which defines the scaling factors namely 

SFerror, SFderivative of error and SFcontrol signal. First 4 bits define the SFerror value, next 

4 bits define SFderivative of error and last 4 bits define SFcontrol signal and are shown 

below: 
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Bit Number 1 2 3 4 5 6 7 8 9 10 11 12 

Bit Value 0 1 1 0 1 1 0 0 1 0 1 0 

Scaling 

Factor (SF) 

SFerror SFd erivative of error Si ̂ control signal 

Figure 5.3-3: Representation of scaling factor problem for ES 

Once a gene is generated and using the pre-defined maximum and minimum limits for each 

scaling factors, scaling factors are calculated as below: 

SFerror: 

SFerror is defined by first 4 bits in the gene and calculated as: 

gene =[0 1 1 0] ; 

SFcupdate = 0, 

SFemin = minimum value; 

SFemax = maximum value; 

for i = 1:1:4 

j = 4-i; 

SFeUpdate = SFcUpdate + gene( 1 ,i) * 2A(j), 

end 

SFerror =SFemin + SFeupdate * 0.0667 * (SFemax - SFemin); 

0.0667 is the resolution and is calculated as 1/ 24. 

Similarly, SFderivative of error and SFcontrol signal values are calculated using the 

appropriate binary bits from the parent gene. 

In the next generation, few bits from the parent gene are randomly mutated to reproduce a 

new offspring (See Appendix G for details). Minimum and maximum values of each scaling 
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factor were selected based on previous experimental results and the researcher's insight about 

the process. 

5.3.4 Use of ES for Evolving Mapping Factor 

Mapping Factor 

A Mapping Factor is a number which modifies uniform fuzzy membership functions to non­

uniform fuzzy membership functions as shown in Figure 5.3-4. Three different mapping 

factors are evolved: powere, powerd, and poweru. These three numbers represent how the 

shape of the fuzzy membership functions in error, derivative of error and control signal will 

be mapped to non-uniform fuzzy membership functions. For example, Figure 5.3-4 shows 

non-uniform fuzzy membership function in error if mapping factor is 4 and calculated as 

shown below: 

powere = 4; 

errorplr = 5 

errorpmr = 1 

errorpll = 0.8A4 

errorpsr = 0.8A4 

errorpml = 0.6A4 

errorpvsr = 0.6A4 

errorpsl = 0.4A4 

errorptr = 0.4A4 

errorpvsl = 0.2A4 

errorzer = 0.2A4 

errorpll = 0 

errorplc = (errorplr + errorpll)/2; 

errorpmc = (errorpmr + errorpml)/2; 

errorpsc = (errorpsr + errorpsl)/2; 

errorpvsc = (errorpvsr + errorpvsl)/2; 

errorptc = (errorptr + errorptl)/2; 
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Figure 5.3-4: Mapping of uniform FMF to non-uniform FMF 

Problem representation 

In order to evolve mapping factor, each of the membership functions, which are triangular, 

was given three variables, namely right, left and center variables. For example, Positive Tiny 

(PT) fuzzy membership function was divided into PT-right (PTR), PT-left (PTL) and PT-

center (PTC) as shown in Figure 5.3-5. Similarly all other fuzzy membership functions where 

divided into right, left and center variables. Figure 5.3-5 shows the division of few FMFs. 

ë , d  

ZE PT PVS PS 

/ ° F, ° F/sec 

X \^  

ZEL ZEC PTL ZER PTC PVSL PTR PVSC PSL PVSR PSC PSR 

Figure 5.3-5: Defining FMF in three variables 

As introduced in the FLC section, Figure 5.3-6 shows uniform fuzzy membership functions 

along with the center of each membership function. 
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Figure 5.3-6: Uniform fuzzy membership functions in error and derivative of error 

On the basis of this uniform fuzzy membership function, non-uniform fuzzy membership 

functions were calculated as: 

errorplr = 5 

errorpmr = 1 

errorpll = 0.8Apowere 

errorpsr = 0.8Apowere 

errorpml = 0.6Apowere 

errorpvsr = 0.6Apowere 

errorpsl = 0.4Apowere 

errorptr = 0.4Apowere 

errorpvsl = 0.2Apowere 

errorzer = 0.2Apowere 

crrorptl = 0 

erromll = -errorplr; 

errornml = -errorpmr; 

erromlr = -errorpll; 

errorasl = -errorpsr; 

errommr = -errorpml; 

erromvsl = -errorpvsr; 

errornsr = -errorpsl; 

erromll = -errorptr; 
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errornvsr = -errorpvsl; 

errorzel = -errorzer; 

errorntr = -errorptl; 

errorpic = (errorplr+errorpll)/2; 

errornlc = -errorpic; 

errorpmc = (errorpmr+errorpml)/2; 

errornmc = -errorpmc; 

errorpsc = (errorpsr+errorpsI)/2 ; 

erromsc = -errorpsc; 

errorpvsc = (errorpvsr+errorpvsl)/2; 

errornvsc = -errorpvsc; 

errorptc = (errorptr+errorptl)/2; 

errornlc = -errorptc; 

Similarly, all the fuzzy membership functions for derivative of error and control signal were 

calculated using powerd and poweru values respectively. 

Another technique used for development of an adaptive FLC was evolving mapping factors 

using ES, to obtain better FLC performance. Using ES, real-time tests were conducted to 

develop an adaptive FLC by evolving mapping factors. Figure 5.3-7 shows a flow chart for 

evolving mapping factors. 
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Figure 5.3-7: Flow chart for evolving mapping factor using ES 

In this case, a 12 bit binary number was being evolved which defines mapping factors, 

namely powere, powerd and poweru. The first set of 4 bits defines the powere value, the 

second set of 4 bits defines the powerd value and the last set of 4 bits defines the poweru 

value and show in Table 5.3-1 
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Table 5.3-1: Problem Representation of scaling factor problem for ES 

Bit Number 1 2 3 4 5 6 7 8 9 10 11 12 

Bit Value 0 1 1 0 1 1 0 0 1 0 1 0 

Mapping 

Factor powere powerd poweru 

Once a gene is generated and maximum and minimum limits for each mapping factor, then 

powere value is calculated as defined below: 

powere 

powere is defined by first 4 bits in the gene and calculated as given below: 

gene =[011 0]; 

powereUpdate = 0; 

poweremin = minimum value; 

poweremax = maximum value; 

for i = 1:1:4 

j = 4-i; 

powereupdate = powereupdaie + gene(l,i) * 2A(j); 

end 

powere = poweremjn + powereupdate * 0.0667 * (poweremax - poweremjn); 

0.0667 is resolution and calculated as 1/ 24. 

Similarly powerd and poweru values are calculated using the appropriate binary bits from the 

gene. Once powerd and poweru are obtained, every fuzzy membership function can be 

calculated as explained before. 
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In the next generation, a few bits from the parent gene are randomly mutated to reproduce a 

new offspring. Minimum and maximum values for each mapping factor were selected based 

on previous experimental results and the researcher's insight about the process. 

Figure 5.3-8 shows the variation in the fuzzy membership functions for different values of 

powere. Similarly, variation in the fuzzy membership functions for different values of 

powerd and poweru can be shown. 
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Figure 5.3-8: Mapping of Uniform Fuzzy Membership function to Non-uniform Fuzzy 

Membership Functions in error for powere value of 1.5, 2 and 4 
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5.3.5 Use of GA for Evolving FRM 

Another adaptive mechanism was to modify the FRM using Genetic Algorithms. Based upon 

the values in the FRM, control actions are taken by FLC for that particular system. For most 

applications, it is difficult to optimize the rule bases and membership functions manually. 

Table 5.3-2 shows a 49 rule FRM based on human intuition and expertise. This human 

intuition based FRM is very basic and designed based on the designer's experience with 

various system operating parameters, like system control, types of flow control valves, and 

response times of various equipment in the system. Performance may be sub-optimal in 

some situations. 

Table 5.3-2: 7x7 Human FRM 

Error (e) 

Derivative (d) 

Error (e) NL NM NS ZE PS PM PL 

NL NL NL NL NL NM NS ZE 

NM NL NL NL NM NS ZE PS 

NS NL NL NM NS ZE PS PM 

7.E NL NM NS ZE PS PM PL 

PS NM NS ZE PS PM PL PL 

PM NS ZE PS PM PL PL PL 

PL ZE PS PM PL PL PL PL 

If FLC performance for particular FRM is unacceptable, then the FRM must be modified. An 

example of a modified 49 rules FRM is shown in Table 5.3-3. 



www.manaraa.com

81 

Table 5.3-3: Modified 7x7 Human FRM 

Error (c) 

Derivative (d) 

Error (c) NL NM MS ZE PS PM PL 

NI. NL NL NL NL NM ZE ZE 

NM NL NL NL NM ZE ZE ZE 

NS NL NL NM ZE ZE ZE PM 

ZE NL NM ZE ZE ZE PM PL 

PS NM ZE ZE ZE PM PL PL 

PM ZE ZE ZE PM PL PL PL 

PL ZE ZE PM PL PL PL PL 

Using a modified FRM, real-time tests were conducted. For real-time tests, it was observed 

that the modified FRM improved the system performance. In order to improve the system 

performance further and develop an adaptive FLC, it was necessary to develop a continuous 

adaptive technique to modify this FRM. One method considered was to start with a modified 

FRM and check the system performance for this modified FRM. If the system performance is 

better than the human FRM, then the modified FRM is retained for future modification. 

Later, changes are made in this modified FRM and system performance is rechecked. This 

process of generating modified FRMs is repeated until satisfactory near optimal performance 

of the system is achieved. But working with the manual process of modifying FRMs is very 

time consuming and expensive. Also, a limited number of cases can be studied when using 

the controller in a real building. As the number of rules in the FRM increases, the complexity 

of finding a better FRM also increases. 

Genetic Algorithms overcome the problems discussed above. A Genetic Algorithm is an 

optimization technique based on the genetic processes found in nature. It is very flexible and 

robust and thus makes it suitable for optimization problems. 
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The GA is a stochastic search algorithm developed from the mechanics of natural selection 

and natural genetics (Goldberg 1989). Compared with other stochastic search methods, GA 

has the following features (Goldberg 1989): 

1. GA works with a coding of the parameter set, not the parameters themselves; 

2. GA searches from a population of points (multiple points), not a single point; 

3. GA uses the objective function information rather than the derivatives or other 

auxiliary knowledge; and 

4. GA uses probabilistic transition rules, not deterministic rules. 

Yes Termination 
Criteria Met? 

No 

Best Solution 

Initial Population 

Crossover 

Reproduction 

Mutation 

Evaluate Objective 
Function 

Problem Representation 

Generate New Population 

Figure 5.3-9: Flow chart for G A 
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Figure 5.3-9 shows the basic procedure that is used during a GA optimization. The user 

supplies n initial guesses or these could be random guesses for the design variables as the 

initial population. For example, if an optimization problem involves k design variables fti to 

pk, then initial population is the following n vectors: 

7V A A A, ' 
Ai & A. 
A. 

V 
A2 

V 
As A„ 

,Ai. -As, A. 
For each vector, the objective function is calculated and compared. The vector that generates 

the best value of the objective function is called the best "parent". A second population is 

generated based on the information of the objective functions corresponding to each design 

variable. Depending on problem definition, the objective function may be either 

minimization or maximization of the value. The goal is to generate new populations so that 

the "features" that make one vector yielding better values of the objective function remain in 

the new population. Once a new population is generated, the values of the objective function 

are calculated and compared again. And the third population is then generated from good 

parents that yield better values of the objective function. This process is repeated until certain 

optimization criteria are satisfied. For example, the criteria could state that the optimized 

value of the objective function from the mth population compared with the one from the nth 

population is less than 10"5. The best parent from the last population is the optimized 

solution. During the process of generating new populations, the design variable vectors 

(parents) are coded into 0 and 1 genes such as: 

'Pu Pu A3 A, 
Ai A2 A3 A„ 
Ai 

V 

A2 
V 

As A „ 
. 

Ai,  A. A,, A, 

->11010,10010,11100.. ..00101 
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The words reproduction and crossover shown in Figure 5.3-9 represent processes to generate 

new populations from old populations guided by the information of the objective function for 

each vector and are not introduced in this thesis (See Appendix F, Goldberg 1987 for more 

information). To prevent converging to a local optimal solution, a process called Mutation, 

which generates a new vector randomly, is involved in the process. The description of these 

processes is outside of the scope of this study. 

10 

-10; 
30 

20 

Design variable Xj 10 

D + + 
0*°B 

D a 1 b a  

,\f - -

Design variable x--> 
0 0 

• A • + : Generations 1 to 4 * : Optimal solution 

Figure 5.3-10: Illustration for GA search results (Wen 2003) 

To have a better understanding for the GA searching process, an optimization (maximization) 

problem is illustrated in Figure 5.3-10. The star on the contour stands for the optimal solution 

that generates the maximum objective function. The round-shape points stand for the initial 

population. It is observed that among the points in the initial population, point A has a higher 

value of the objective function. The second generation, which is represented by the square-

shape points, is generated to be close to point A by reproduction and crossover processes. 

Point B stands for the best parent in the second generation. If no mutation process is 
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involved, then the local optimal solution - point C from the third population (represented by 

the triangular-shape points) is believed as the optimal point. By using the mutation process, 

two random points, point D and E are generated in the third population. The algorithm then 

generates the next population near point D among which the point F is the best parent. The 

process is repeated until it finds the optimal point. The population size, gene length, 

optimization criteria, and mutation frequency are all adjustable. 

Using random numbers, a GA generates the values for each element in a FRM. The process 

of generating the FRM using random numbers is called as an Initialization Process. 

5.3.5.1 Different Initialization Methods: 

Depending upon the method used to generate the random numbers for the FRM, different 

initialization methods studied were: 

1. Completely Random Method, 

2. Changing Human FRM by random number generated amongst -1,0, 1 

3. Changing Human FRM by random number generated amongst -1, 0, 1 without 

changing specific elements from the Human FRM 

4. Changing Human FRM by random number generated amongst -1,0, 1 without 

changing specific elements in the outer loop from the Human FRM 

Completely Random Method 

In the completely random method for the initialization process, FRMs are developed by 

generating random numbers amongst the different possible Fuzzy Rules Actions. Possible 

fuzzy actions were divided into 11 numerical values staring from 1 to 11, where 1 

corresponded to NL and 11 corresponded to PL. 

Changing Human FRM by random number generated amongst -1, 0, and 1 

In this method for the initialization process, FRMs were generated by modifying every 

element in the human FRM by randomly generated numbers amongst -1,0, and 1. 
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Changing Human FRM by random number generated amongst -1,0 and 1 without 

changing the specific elements from the Human FRM 

In this method for the initialization process, FRMs were generated by modifying every 

element in the human FRM, except the elements in the four corners and the center element, 

by randomly generated numbers amongst -1,0, and 1. 

Changing Human FRM by random number generated amongst -1, 0 and 1 without 

changing the specific elements in the outer loop from the Human FRM 

In this method for the initialization process, FRMs were generated by modifying every 

element in the human FRM, except the elements in the outer loop, by randomly generated 

numbers amongst -1,0, and 1. Using this type of FRM assured that when the system is out of 

control or is progressing towards the extreme conditions correct action is taken. 

5.4 Summary 

In this chapter, different methods used for development and implementation of an adaptive 

FLC were discussed. Adaptive mechanisms used for modifying scaling factors and fuzzy 

membership functions using Evolutionary Strategies were presented in detail. Also, adaptive 

mechanisms for evolving mapping factors in fuzzy membership functions were presented. 

Another method for developing an adaptive FLC using Genetic Algorithms for evolving the 

fuzzy rule matrix was presented. 
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Chapter 6 Results for manually tuned FLC and SAT models 

6.1 Results for Manual Tuned FLC 

Real-time tests were conducted using the FLC for an initial FRM of 49 rules and then using 

121 rules. Also, experiments were conducted with modified FRMs and scaling factors. 

6.1.1 Real-time Results for 49 Rules FRM 

Initially, experiments were conducted using a default 49 rule FRM. Then the FRM was 

manually tuned by changing scaling factors and the fuzzy rule matrix. 

6.1.1.1 Real-time results for FLC using default 49 rules FRM 

Real-time tests were conducted starting with the initial default 49 rules FRM given in Table 

5.1-1. Figure 6.1-1 shows real-time results for a FLC having 49 default rules FRM. This test 

demonstrated usefulness of FLC for controlling SAT by changing the chilled water valve 

position. 

Real time test results for FLC using default 7x7 FRM 
RMS error: 1.13°F 

SAT 
SATSPT 
Valve Position 

& 

5 

S 

Time (1 Unit = 20 sec) 

Figure 6.1-1: Real-time test results for FLC using default 49 rules FRM 
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Due to the long settling time for the SAT, the FLC performance was unacceptable. To 

improve the FLC performance, manual tuning was done by using the scaling factors and then 

changing a few elements in the 49 rules FRM. 

6.1.1.2 Results for FLC by changing scaling factor in error and derivative of error for 

49 rules FRM 

To achieve faster response with lower settling times, the scaling factors were increased. 

Increasing the scaling factor makes the controller response faster and thus attains the required 

set-point earlier. Real-time tests were conducted using the default 49 rules FRM but fuzzy 

membership functions in error and derivative of error were multiplied by scaling factors of 5. 

Results in Figure 6.1-2 shows that using scaling factor is not helpful. More real-time tests 

were conducted with different scaling factors but none resulted in acceptable FLC 

performance. 

Real time test results for FLC using default 7x7 FRM, emax = 5, dmax = 5 
RMS error: 2.29°F 

J 

1 

O 

E 

SAT 

SATSPT 

Valve Position 

Time (1 Unit = 20 sec) 

Figure 6.1-2: Real-time test results for FLC using default 49 rule FRM and 

SF of 5 for error (e) and derivative of error (d) 
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6.1.1.3 Results for manual tuning of FLC by changing few elements from the 49 rules 

FRM 

Real time test results for FLC using modified 7x7 FRM. emax = 2, dmax = 2 
RMS error: 2.80°F 

I 
> 

0 

1 

I 

SAT 

SATSPT 

— Valve Position 

Time (1 Unit = 20 sec) 

Figure 6.1-3: Case I - Real-time test results for FLC using modified 49 rules FRM 

When altering the scaling factor did not work, real-time tests with manual tuning of the FLC 

by changing few elements in the default 49 rules FRM were conducted. But, as shown in 

Figure 6.1-3, no significant improvement in the FLC performance was observed. 

Real-time results show that with the modified FRM, the FLC does not execute maximum 

action, i.e. chilled water valve position was not opened to entire extent. If maximum action 

would have been taken, the valve should have had achieved the 100% open position to 

reduce the error sooner. Further modifications were made in the 49 rules FRM. Figure 6.1-4 

shows real-time test results with this modified FRM which shows little improvement in 

performance from the previous ones. 
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Real time test results for FLC using modified 7x7 FRM, emax = 2, dmax = 2 
RMS error: 1.00°F 

SAT 

SATSPT 

—— Valve Position 

2 

a 

LA 

Time (1 Unit = 20 sec) 

Figure 6.1-4: Case II - Real-time test results for FLC using modified 49 rules FRM 

Though the modified 49 rules FRM results in better control for one set-point, its response is 

unacceptable when the set-point is changed (results not shown). Thus, the FRM having 49 

rules results in unacceptably long settling times. Hence, experiments were performed with a 

larger 9 by 9 FRM having 81 fuzzy rules. But, similar unacceptable results were obtained. 

So, a larger 11 by 11 FRM was developed which allows 121 fuzzy rules. 

6.1.2 Real-time test results for 121 rules FRM 

For real-time tests using a 49 rule FRM poor FLC performance was observed, hence to have 

better FLC performance a 121 rule FRM was developed. 

6.1.2.1 Real-time test results for default 121 rules FRM 

For the initial real-time tests using a default 121 rules FRM, larger oscillatory responses with 

higher chilled water valve movement were observed as shown in Figure 6.1-5. Table 5.2-2 

shows default 121 rules FRM. Unacceptable results for the FLC lead to further studies with 

manual tuning of FRMs. 



www.manaraa.com

91 

Real time test results for FLC using default 11x11 FRM, emax = 5, dmax = 2 
RMS error: 2.40°F 

t 
1 

I 
I 

SAT 

SATSPT 

Valve Position 

Time (1 Unit = 20 sec) 

Figure 6.1-5: Real-time test results for FLC using default 11x11 rules FRM 

As discussed above, manual tuning was done by modifying the scaling factor and changing 

some elements in the FRM. 

6.1.2.2 Results for changing scaling factor in error and derivative of error for 121 rules FRM 

Real-time tests were conducted with increased scaling factor for the error and derivative of 

error. From Figure 6.1-6 it is observed that when the error is negative and increasing, no 

action is executed as desired. Whereas when the error is negative and decreasing, the desired 

immediate actions are executed. As the result of which error is always negative. 
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Real time lest results for FLC using default 11x11 FRM. emax = 2, dmax = 2 
RMS error: 2.76°F 

l 

I 

I 

Time (1 Unit = 20 sec) 

Figure 6.1-6: Case I - Real-time test results for FLC using default 121 rules FRM and SF of 2 

for error and derivative of error 

Real time test resiits for FLC using default 11x11 FRM, emax = 2, dmax = 2 
RMS error: 2.78°F 

I 

I 

Time (1 Unit = 20 sec) 

Figure 6.1-7: Case II - Real-time test results for FLC using default 121 rules FRM and SF of 2 

for error and derivative of error 



www.manaraa.com

93 

More real-time tests were conducted with different scaling factors, but none resulted in 

acceptable FLC performance. Figure 6.1-7 shows the result when a scaling factor of 2 in 

error and derivative of error is used. 

6.1.2.3 Results for changing few elements from the default 121 rules FRM 

Some rules in the fuzzy rule matrix were changed and additional real-time tests were 

conducted along with a change in the SATSPT. Figure 6.1-8 shows the results obtained with 

the manually adjusted rule matrix. Again, the control is okay, but the results suggest that 

more work is needed to tune the FLC. 

Figure 6.1-8: Real-time test results for FLC using modified 11 by 11 elements FRM 

Figure 6.1-8 shows the results when the scaling factors of 10 in error and derivative of error. 

This configuration works very well for maintaining the temperature at the lower SATSPT, 

but when the SATSPT is changed, unacceptable oscillatory response is observed. Since some 

of the fuzzy rules are not correctly tuned oscillatory response is observed. Thus after 

conducting various experiments with different FLC configurations, namely altering the 

number of rules, changing the scaling factors, and changing values of the elements in the 

FRM, it was decided to develop an adaptive technique to take care of tuning the FLC. 

Real time test results for FLC using modified 11x11 FRM, emax = 10, dmax = 10 
RMS error: 2.36° F 

SAT 

SATSPT 

Valve Position 

Time (1 Unit= 20 sec) 
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6.1.3 Summary 

Initially, experiments were conducted using a 7 by 7 default fuzzy rule matrix having 49 

rules. These experiments demonstrated that the FLC was able to control the SAT by 

controlling the chilled water valve position. But the performance of this FLC was poor. 

Hence a larger 11 by 11 fuzzy rule matrix was developed which allowed 121 fuzzy rules and 

manual tuning methods for improving FLC performance were studied. 

The larger 11 by 11 fuzzy rule matrix allowed use of more rules and hence finer control 

action. Two manual tuning methods studied were changing the scaling factor and changing 

the fuzzy rule matrix. In manual tuning, error, derivative of error and control signal scaling 

factors were changed. Whereas manual tuning of the FRM was done by changing selective 

elements in the FRM for which control action taken for error and derivative of error was not 

correct. FLC performance with the manually tuned 121 fuzzy rule matrices were better 

compared with manually changed scaling factors. 

6.2 Neural Network Model Results for predicting SAT 

The purpose of developing a neural network (NN) model is to use a computational model to 

study more cases for variations in the inputs and their effects on SAT. The offline NN 

models were developed and tested using Matlab's Neural Network Toolkit. 

6.2.1 Offline Neural Network Models 

For development of offline NN model previous experimental data was used. This data 

included the system behavior for various input conditions. In order to develop a good NN 

model, it is necessary that the training data set includes most of the operating conditions that 

system experiences. 

6.2.1.1 Neural Network model for predicting SAT using 18 inputs 

The initial NN model was studied with 18 inputs, namely: 

1. Entering Water Temperature in Cooling Coil ("F)-(CHWC-EWT) 

2. Leaving Water Temperature in Cooling Coil (°F)-(CHWC-LWT) 

3. Mixed Water Temperature in Cooling Coil (°F)-(CHWC-MWT) 

4. Entering Water Temperature in Heating Coil (°F)-(HHWC-EWT) 
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5. Leaving Water Temperature in Heating Coil (°F)-(HHWC-LWT) 

6. Mixed Water Temperature in Heating Coil (°F)-(HHWC-MWT) 

7. Chilled Water Valve Position (% Open)-(CHWC-VLV) 

8. Chilled Water Pump Flow Rate (GPM)-(CHWP-GPM) 

9. Exhaust Air Damper (% Open)-(EA-DMPR) 

10. Mixed Air Temperature (°F)-(MAT) 

11. Outside Air Flow Rate (CFM)-(OA-CFM) 

12. Outside Air Damper (% Open)-(OA-DMPR) 

13. Outside Air Temperature fF)-(OA-TEMP) 

14. Return Air Flow Rate (CFM)-(RA-CFM) 

15. Return Air Damper (% Closed)-(RA-DMPR) 

16. Return Air Temperature (°F)-(RA-TEMP) 

17. Supply Air Temperature (°F)-(SA-CFM) 

18. Supply Air Temperature Set Point (°F)-(SATSPT) 

Several different NN architectures with varying number of neurons in the hidden layers and 

different training algorithms were studied. The best results were obtained for a single hidden 

layer using the tansig transfer function and with the output layer using the purelin transfer 

function. (See Appendix D for details). The hidden layer has 8 neurons. Results for the best 

configuration are shown in Figure 6.2-1. Figure 6.2-1 shows that the total RMS error is 

0.70425 °F, thus this NN model was able to predict SAT well. 
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Offline test results for 18 inputs NN Model to predict SAT 

& 

Time (1 Unit = 1 min) 

Figure 6.2-1: Offline test results for predicting SAT using NN model with 18 inputs 

6.2.1.2 Neural Network model using derivative information 

Another NN model using derivative information was studied with the following inputs: 

1. Chilled Water Coil Entering Temperature - CHWC-EWT 

2. Derivative of Chilled Water Entering Temperature - d(CHWC-EWT) 

3. Mixed Air Temperature - MAT, 

4. Derivative of Mixed Air Temperature - d(MAT), 

5. Supply Air Flow Rate - SACFM 

6. Derivative of Supply Air Flow Rate - d(SACFM) 

7. Chilled Water Coil Valve Position - CHWC-VLV Position 

8. Derivative of Chilled Water Coil Valve Position - d(CHWC-VLV Position) 

Adding derivative inputs should help the NN model to map the time dependence of inputs to 

the output. Offline tests were conducted for above NN model and results are shown in Figure 

6.2-2. 
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Offline Tests using NN Models for Predicted SAT using 4 + 4 derivative information 
RMSerror: 0.11958(°F) 

Predicted SAT 

Time (1 Unit = 30 sec) 

Figure 6.2-2: Offline test results for predicting SAT using NN model with 8 inputs having 

derivative information 

Figure 6.2-2 shows that NN model using 8 inputs with derivative information has very good 

results but required more computation time. So another NN model was developed. While 

selecting inputs for this new NN model, basic knowledge of the heat and mass transfer 

involved in the cooling process and results obtained from sensitivity analysis were used (See 

Appendix E for details). 

6.2.1.3 Neural Network model using 8 inputs 

This NN model used the basic knowledge of heat and mass transfer for selection of different 

inputs. The 8 inputs selected for this NN model are: 

1. Chilled Water Entering Temperature (CHWC-EWT) ; 

2. Chilled Water Leaving Temperature (CHWC-LWT); 

3. Chilled Water Mix Temperature (CHWC-MWT); 

4. Chilled Water Flow Rate (CHWP-GPM) 

5. Mixed Air Temperature (MAT); 

6. Supply Air Flow Rate (SACFM); 
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7. Chilled Water Coil Valve Position (CHWC-VLV); 

8. Supply Air Set Point (SATSPT); 

Figure 6.2-3 shows the offline test results. 

Offline Test Result for NN model using 8 inpul information 

RMSerror: 0.2279°F 

Predicted SAT 

SAT 

Figure 6.2-3: Offline test result for predicting SAT using NN model with 8 inputs for unseen 

data 

It is observed that since the NN model was not trained with all conditions that system might 

experience; all of the time good results were not obtained. It is very difficult to have a 

training data set that will include all conditions that the system might experience. One 

method to solve this problem is to develop an adaptive NN model. In this method, the 

adaptive NN model will be updated periodically using the most current data which has been 

recorded. 

6.2.1.4 Updating Trained Neural Network Model 

Even though offline tests had acceptable performance for the above mentioned NN models, 

in real-time tests unacceptable errors between SAT and SATpred were recorded. One of the 

main reasons for this behavior is the training data. In most of the cases studied, during real­

time tests, the trained NN model was tested on unseen data that included values for variables 
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that were outside the training data set. Since NNs are highly nonlinear, for these unseen data 

inputs erratic results were obtained. 

No information was found which discussed this problem and its solution in detail. A possible 

solution for this problem is to update the trained NN model in real time. 

Two different approaches used to improve the NN model performance are: 

1. Retraining the original NN model using old and new data (one big data set) or 

2. Retraining the original NN model using new data only (using updating 

procedures) 

6.2.1.5 Adaptive Neural Network model 

For offline test of this adaptive NN model technique a good set of training data was created 

using the archives available from the ERS. Available data sets for all seasons and extreme 

limits were included in the training data set. Once a correct data set had been created, all of 

the 18 inputs discussed previous were considered as inputs to create a better NN model to 

predict SAT. Various combinations of NN architectures were studied to determine a good 

NN model. 

The same test data set was used throughout the training phase to study different NN 

architectures. The best NN architecture used only 8 inputs (CHWC-EWT, CHWC-LWT, 

CHWC-MWT, MAT, CHWC-VLV, CHWP-GPM, SATSPT, SACFM), 8 nodes in the 

hidden layer and one output. Thus, it was decided to update the NN with just 8 input 

parameters and 8 nodes in the hidden layer. 

This trained NN models were tested with completely unseen data. The retraining NN model 

showed a large error in the SATPRED whereas the adaptive NN model error in the SATPRED 

drops significantly and is within the acceptable limits (error is 0.5-1.0°F). The results are 

shown in Table 6.2-1 and Figure 6.2-4. 

To study the NN model with retraining technique, 4 data sets were selected randomly from 

the archive of available data sets. Each data set was divided into 5 equal parts. For each case, 
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the NN model collects data for each part and predicts SAT, i.e. SATPRED. After prediction of 

SAT, the same NN model was retrained with the data for which it had just predicted SAT. 

This makes the NN model adapt to current data while retaining the information from the old 

data set. Thus, with this technique, valuable information accumulated in the original neural 

net is preserved and the NN is adapted to the new data. Computationally it is found that 

instead of retraining the neural net for the combined data set, i.e. old plus new data set, if the 

NN is trained on the new data set only; better results are obtained as indicated in Table 6.2-1 

below. Also retraining on the combined set requires more computation time as compared 

with the retraining technique. 

Table 6.2-1: Offline test results for retraining and adaptive trained neural network model 

Test 

Datai 

Test 

Data2 

Test 

Data3 

Test 

Data4 

# of Data Points used for retraining 2592 288 288 288 

RMS error with old and new data sets (°F) 

Parti 

1.82 4.59 5.12 1.33 

RMS error with new data set (°F) Parti 0.25 0.16 0.26 0.33 

RMS error with old and new data sets (°F) 

Part2 

1.34 0.43 5.10 1.25 

RMS error with new data set (°F) Part2 0.26 0.24 0.19 0.36 

RMS error with old and new data sets (°F) 

Part3 

1.10 0.53 5.00 2.83 

RMS error with new data set (°F) Part3 0.25 0.17 0.29 0.33 

RMS error with old and new data sets (°F) 

Part4 

1.86 0.87 0.54 0.99 

RMS error with new data set (°F) Part4 0.24 0.16 0.22 0.32 

RMS error with old and new data sets (°F) 

Part5 

1.81 1.07 1.53 1.79 

RMS error with new data set (°F) Part5 0.25 0.18 0.21 0.33 
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Offline lest results for the retraining NN model 

Training Date Sell 

Training Date Set2 

Training Date Set3 

Training Dale Set4 

e 
S 

NN Model results for each part ol the test data set 

Offline test results for the adaptive NN model 

-Training Date Sell 

—e- Training Date Sel2 

—a— Training Date Set3 

—Training Date Sel4 

2 

NN Model results for each part of the test data set 

Figure 6.2-4: Offline test results for predicting SAT using retraining and adaptive NN model 

Figure 6.2-5 and Figure 6.2-6 show the results for the retraining and the adaptive NN models 

respectively. The RMS errors are much smaller for the adaptive NN model calculated for 

entire data sets. Legends in Figure 6.2-5 and Figure 6.2-6 shows the RMS error for neural 

network model using complete data set, data set 1, data set 2, data set 3 and data set 4 

respectively. From the Figure 6.2-5, for the offline test for retraining of NN model when the 

complete data set was used for training it had RMS error of 6.88°F, when only 1st data set 

was used it had RMS error of 8.28°F, for 2nd data set RMS error of 5.62°F, for 3rd data set 

RMS error of 5.63°F and for 4th data set RMS error of 4.96°F. 

From the Figure 6.2-6, for offline test for the adaptive NN model when the complete data set 

was used for training it had RMS error of 1.32°F, when only 1st data set was used it had RMS 

error of 1.26°F, for 2nd data set RMS error of 1.07°F, for 3rd data set RMS error of 1.07°F and 

for 4th data set RMS error of 0.79°F. 
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Offline Test Results for Retraining NN model 

RMSerror after retraining done with old data : 6.88 Errorl: 8.2886 Error2: 5.6317 Error3: 5.6317 Error4: 4.9669 (°F) 

RMSError for Complete Data 

RMSErrorl 

RMSError2 

RMSError3 

RMSError4 
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Time (1 Unit = 30 sec) 

Figure 6.2-5: Offline test results for predicting SAT using retraining NN model 

Offline Test Results for Adapting NN model 

RMSerror after retraining done with old data : 1.326 Error! : 2.2615 Error2: 1.0717 Error3: 1.0717 Error4: 0.78872°F 

Error for Complete Data 

t 
f 

3000 

Time (1 Unit = 30 sec) 

Figure 6.2-6: Offline test results for predicting SAT using adaptive NN model 
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6.2.1.6 Neural Network model output for erroneous and non erroneous data 

Offline test results using 8 inputs NN Model for predicting SAT with erroneous data 

RMS error: 1.06" F 

SAT 

NN model predicted SAT 

I 

Time (1 unit = 30 sec} 

Figure 6.2-7: Offline test result for predicting SAT using NN model with 8 inputs having 

erroneous data 

While conducting offline tests for the 8 input NN model, erroneous data was observed. 

Results for this test are shown in Figure 6.2-7. Figure 6.2-7 shows that sometimes large 

errors are observed in SATPREd because of erroneous data. This erroneous data problem was 

encountered during real-time tests. Instead of recording the correct value, zero or -999 was 

recorded. This error is due to the communication interval between Metasys and Matlab. 

Metasys is updated every 20 seconds and if Matlab requests a value within those 20 seconds, 

either a zero value or a garbage value gets recorded. To solve this data reading problem 

during real-time tests, zero or -999 values were replaced with the previous correct value. 

Erroneous data has a significant effect on NN model performance. The NN model needs 

correct data for training and a trained network needs correct input data for calculating output 

values. The normalization process also gets affected due to this erroneous data. For example, 

if data for MAT is read as 'zero' instead of actual value (which should be within the range of 
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60 to 80 °F), then minimum value of MAT used for normalization is zero and the whole data 

is probably being normalized using zero as a minimum value. 

In the original normalization process, minimum and maximum values were found from the 

data set used for training. So with the erroneous data, the training data was normalized 

incorrectly and hence further resulting error in SATPRED. So one method used to eliminate the 

error in the normalization is using predefined minimum and maximum values for each input. 

These predefined minimum and maximum values are calculated using previous available 

data. After correcting erroneous data, results for a NN model were improved and are shown 

in Figure 6.2-8. 

Figure 6.2-8: Offline test result for predicting SAT using NN model with 8 inputs without 

erroneous data 

6.2.2 Real-time Test Results for NN Models and Adaptive Neural Network Model 

6.2.2.1 Real-time results for NN model using 18 inputs 

The real-time tests were conducted using the same NN model that was developed for the 

offline tests. The output from the NN model was recorded for every data point. Figure 6.2-9 

shows the results for SAT, SATPREd, and SATSPT. It is observed that this NN model using 

Offline test results using 8 inputs NN Model for predicting SAT without erroneous data 
RMS error: 0.16°F 

NN model predicted SAT 

Time (1 urit = 30 sec) 
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18 inputs has poor performance in real-time tests. Also it requires more computation time 

and fails to show output repeatability. Additional computation time causes problems in 

executing change in the chilled water valve position signal calculated by the FLC which 

results in delay for corrective action. Hence, another NN model with fewer inputs was 

studied. 

Real time test results using 18 inputs NN Model lor predicting SAT 
RMS error for NN Model: 5.14°F 

I 

SATSPT 

SAT 

— - NN Model Predicted SAT 

Time (1 Unit = 30 sec) 

Figure 6.2-9: Real-time test results for predicting SAT using NN model with 18 inputs 

6.2.2.2 Real-time results for NN model using derivative information 

Since the offline results for this NN model were good, real-time tests were conducted using 8 

inputs with derivative information. Figure 6.2-10.shows poor performance of this NN model. 
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Real time tests using NN Models for Predicted SAT using 4 + 4 derivative information 

RMSerror: 10.8937°F 

! M 
A f \ 

— Predicted SAT 

— SAT 

- SATSPT 

rh 

^ \ \ \ j \ I 
V V V 

o. 55 -

300 400 500 

Time (1 Unit = 30 sec) 

Figure 6.2-10: Real-time test results for predicting SAT using NN model using 8 inputs with 

derivative information 

6.2.2.3 Real-time results for NN model using 8 inputs 

Offline testing of NN model using 8 inputs for predicting SAT has shown better results hence 

real-time tests were conducted. During the real-time tests, larger RMS error was observed as 

shown in Figure 6.2-11 so this NN model was retrained using additional data points. After 

retraining, based on RMS error value, no improvement in NN model performance is 

observed as shown in Figure 6.2-12. 



www.manaraa.com

107 

Real time test results using 8 inputs NN Model for predicting SAT 
RMS error for NN Model: 3.83°F 

I 

NN model predicted SAT 

Time (1 Unit = 30 sec) 

Figure 6.2-11: Case I - Real-time test results for predicting SAT using NN model using 8 

inputs 

Real time test results using 8 inputs NN Model for predicting SAT 
RMS error for NN Model: 4.23°F 

NN model predicted SAT 

I 

Time (1 Unit = 30 sec) 

Figure 6.2-12: Case II - Real-time test results for predicting SAT using NN model using 8 

inputs 
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6.2.2.4 Real-time results for adaptive NN model 

Figure 6.2-13 shows results for real time tests using the adaptive NN model. Most of the time 

adaptive NN model was able to the predict SAT within 1.5°F with RMS error of 1.18°F. 

Additional real-time tests were conducting using this adaptive NN model and results are 

shown in Figure 6.2-14 along with the test conditions. 

Real-Time Test Results using Adaptive NN Model for Predicted SAT using 8 input information 

RMSerror 1.8317 adapti\eNNresults032105 program: onlinederinnmodel 

74 

Predicted SAT 
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54 0 200 400 600 800 1000 1200 
Time (1 Unit = 30 sec) 
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Figure 6.2-13: Real-time test results for predicting SAT using adaptive NN model 
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Real time test results using Adaptive NN Model for predicting SAT 
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Real time test results using Adaptive NN Model for predicting SAT 

RMS error for NN Model: 0.52°F 
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Figure 6.2-14: Real-time test results for predicting SAT using adaptive NN model 
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6.2.3 Summary 

This section discussed various NN models that were developed. The purpose of developing 

an offline NN model was to study more cases for variations in the inputs and their effects on 

SAT. NN models with different numbers of inputs, namely 18, 8 and with derivative 

information were studied. An erroneous data problem was encountered during training the 

NN models. During real-time tests sometimes zero or -999 values were recorded instead of 

correct input data. This problem was solved by replacing the erroneous data by using the 

previous correct reading and/or increasing the sampling periods to 20 seconds. Results for 

NN output using erroneous data and without erroneous data were studied. RMS error with 

erroneous data was 1.0809°F and without erroneous data was 0.1416°F. 

Offline test results for a NN model using 8 inputs, along with derivative information, had 

RMS error of 0.14°F. But in real time experiments, poor performance of NN model was 

observed with RMS error of 10.89°F. Offline test results for a NN model using 8 inputs had 

RMS error of 0.23°F. For real time experiments the RMS error was 4.34°F. 

For all the NN models studied, higher RMS errors were observed, so two updating 

techniques for NN models were studied. In first technique the NN model was retrained using 

old and new data sets and in the second NN model was retrained using only the new data set. 

Offline results show that an RMS error less than VF was observed for the second adaptive 

NN model. Also real-time test had 1.8 °F RMS errors for second adaptive NN model. 

6.3 GRNN Model Results for predicting SAT 

Another cooling coil model was developed using the GRNN method. Generalized Regression 

Neural Network (GRNN) has been proposed as an alternative to statistical regression 

equations and conventional artificial neural-networks. GRNN are memory-based feedforward 

networks based on the estimation of probability density functions. Offline and real-time test 

results are discussed below. 
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6.3.1 Offline Test 

To predicted the supply air temperature (SAT) for the next time step, an offline GRNN 

model was developed using 8 inputs, namely; 

1. Chilled Water Entering Temperature (CHWC-EWT); 

2. Chilled Water Leaving Temperature (CHWC-LWT); 

3. Chilled Water Mix Temperature (CHWC-MWT); 

4. Chilled Water Flow Rate (CHWP-GPM) 

5. Mixed Air Temperature (CHWC-MAT); 

6. Supply Air Flow Rate (SACFM); 

7. Chilled Water Coil Valve Position (CHWC-VLV); 

8. Supply Air Set Point (SATSPT); 

The offline GRNN was developed and tested using Matlab's Neural Network Toolkit. This 

GRNN model (GRNN model I) used the same training data that was used for adaptive NN 

models. Offline testing of this trained GRNN model was done on the unseen data. Results 

show that this GRNN model was able to predict SAT with higher RMS error. So, another 

GRNN model (GRNN model II) using past output information for SAT was studied. This 

GRNN model used 18 inputs, namely the 8 inputs used in GRNN Model I and 10 time steps 

of past information for the SAT. Results for both of these models are shown in Figure 6.3-1 

and Table 6.3-1. 

Table 6.3-1: Results for Offline Tests using GRNN Models for Predicted SAT 

Model Description RMS error (°F) 

GRNN model I 8 inputs 1.64 

GRNN model II 8 inputs plus 10 time steps past information 

for the output 

0.10 
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Offline test results using GRNN Models for predicting SAT 
RMS Error for GRNN Model 1:1.6°F,GRNN Model II: 0.1 °F 
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Figure 6.3-1: Offline test results for predicting SAT using GRNN models I and II 

In addition to the above two models, another GRNN model (GRNN model III) was studied 

which used derivative information for the previous outputs in addition to the 8 inputs used in 

GRNN model I. Offline test results show that GRNN model II had the least RMS error 

among the three models studied. Table 6.3-2 and Figure 6.3-2 shows results for offline test. 

Table 6.3-2: Offline tests results for predicting SAT using GRNN Models 

GRNN Model Type RMS error (°F) 

GRNN Model I 8 inputs 16.08 

GRNN model II 8 inputs with 10 time steps of past 

information for the output 

0.97 

GRNN model III 8 inputs with 10 time steps of past 

derivative information for the output 

2.91 

Offline test results shows that GRNN model II and III are better and hence were considered 

for the real-time studies. 
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Offline test results using GRNN Models for predicting SAT 

RMS error for GRNN Model 1:16.08°F, GRNN Model II: 0.97°F,GRNN Model III: 2.91 °F 

I 

SAT 

GRNN Model I 

GRNN Model II 

- - GRNN Model II 

Time (1 Unit = 30 sec) 

Figure 6.3-2: Offline test results for predicting SAT using GRNN model I, II and III 

6.3.2 Real-time Test 

Real-time tests were conducted with GRNN models II and III. The GRNN models II and III, 

which were trained offline, were recalled for real-time tests. Using the GRNN models, 

predicted SAT values were calculated and recorded for each time step. For real-time tests, 

SATSPT was changed from 60 to 70°F every 45 minutes. Figure 6.3-3 shows the variations 

in the input variables and Figure 6.3-4 shows the results for SAT and predicted SAT using 

GRNN models. The RMS errors for each GRNN model are shown in Table 6.3-3. Results 

show that GRNN models II and III both are able to predict SAT with lower error. Due to less 

computational time and better performance, GRNN model II was further tested for constant 

SATSPT with variation in the supply air flow rate from 1600 - 2200 cfm in steps of 200 cfm 

every hour. For real-time tests GRNN model II was able to predict SAT with low RMS error. 
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Real time performance results of GRNN Model II and III for predicting SAT 

RMS error: 0.75°F 

I 

- SATSPT 

SAT 

- - EWT 

VLV Position 

Time (1 unit = 30 sec) 

Figure 6.3-3: Variation in the inputs for real-time testing of GRNN model II and III 

Real time performance results of GRNN Models for predicting SAT 
RMS error for GRNN Model II: 0.95, GRNN Model III: 0.96 

-•—SATSPT 

SAT 

— GRNN Model II Predicted SAT 

- - GRNN Model III Predicted SAT 

s 

Time (1 unit = 30 sec) 

Figure 6.3-4: Real-time test results for predicting SAT using GRNN models II and III 
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Table 6.3-3: RMS error for predicting SAT using GRNN models II and III 

GRNN Model Type RMS error (°F) 

GRNN model II 8 inputs with 10 time 

steps of past 

information 

0.95 

GRNN model III 8 inputs with 10 time 

steps of past derivative 

information 

0.96 

6.3.3 Summary 

The development of offline and real-time GRNN models to predict SAT for the next time 

step was discussed in this section. All the GRNN models were developed and tested using 

Matlab's Neural Network Toolbox. Three different GRNN models were studied. The first 

model used 8 inputs, the second model used 8 inputs along with 10 time steps of past 

information for the output, and the third model used 8 inputs along with 10 time steps of past 

derivative information for the outputs. It was observed that for the offline tests GRNN model 

I had poor performance with RMS error of 1.64°F for the first case and 16.08°F for the 

second case. GRNN model II was the best model with RMS errors of 0.10°F and 0.97°F 

respectively for the two cases studied. GRNN model III had an RMS error of 2.91°F for the 

second case. GRNN models II and III were tested in real-time. GRNN model II had an RMS 

error of 0.95°F and GRNN model III had an RMS error of 0.96°F. Overall, the performance 

of GRNN model II was better than the other GRNN models studied. 

6.4 Lump Capacitance Models Results for predicting SAT 

For offline testing of different models, open loop data was used. For the open loop test of the 

system, no control action was executed on the chilled water valve position. The chilled water 

valve position was incremented from 0 - 100% open position in steps of 10% and then 

decremented from 100 - 0% open position in steps of 10% after holding it constant for 45 

minutes in every position. CHWC-EWT, CHWC-LWT, EAT, and chilled water valve 

position were recorded. For the LCM development, all these recorded values were used to 
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predict SAT in the offline test of each model 

error value calculated as: 

RMS error =y^(SAT - SATPRED f ; 

where, 

n = number of data points 

6.4.1 Offline Test 

Offline tests were conducted using fours different lump capacitance models as discussed in 

section 4.5. As mentioned in the above section, open loop test data was used for this study. 

SAT predicted by each LCM is shown in Figure 6.4-1. 

Offline test results using different LCMs for predicting SAT (Valve position varied from 0 -100 % open in selp of 10% after every 45 min) 

RMS error for: LCM I: 9.69 LCM II: 5.94 LCM III: 5.88 LCM IV: 3.28°F 

SAT 
- - LCM I 

LCM II 
LCM III 
LCMIV 

Time (1 Unit = 30 sec) 

. All the LCMs were evaluated based on RMS 

... 6.4-1 

Figure 6.4-1: Difference between SATPRED and SAT for different LCMs 
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Table 6.4-1: RMS error for offline test in predicting SAT using different LCMs 

RMS error (°F) 

LCM I 969 
LCM II 5.94 
LCM III 5.88 
LCM IV 3.28 

From Figure 6.4-1 and Table 6.4-1, LCM IV has minimum RMS error. For this model, the 

GA technique was used to determine values for VLVca and VLVcb along with UA, AFc, 

Tew, Tea. LCM III was next best. For LCM II and LCM III, based on RMS error values, no 

significant changes in the results were observed even though LCM III accounted for data 

reading errors. LCM I have maximum RMS error since it did not account for the correction 

in the chilled water flow through the valve. 

6.4.2 Real-time Test 

The purpose of this real-time test was to verify LCM performance. As mentioned before, the 

purpose of the model is to use it in the development of a control system. Real-time test 

results may also suggest if some modifications in the model are required. Real-time 

validation is accomplished by recording SAT for the step change in the supply air set point 

temperature and recording calculated SATPREd values along with CHWC-EWT, CHWC-

LWT, CHWC-MWT, EAT, CHWC-GPM and chilled water valve position. 

Based on the offline test results, real-time testing was done using LCM IV. A step change in 

supply air set point temperature was commanded. SATPREd was calculated for each time step 

using LCM IV. Figure 6.4-2 shows the CHWC-EWT, MAT, SAT, SATSPT and VLV 

position. Real-time test results are shown in Figure 6.4-3 and Table 6.4-2. LCM IV was able 

to predict SAT within 2°F for most of the test time. 
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Real time experiments results for predicting SAT using LCM Model 

-SATSPT 

-SAT 

EWT 

MAT 

VLV 

J3 

300 350 

Time (1 unit = 25 sec) 

Figure 6.4-2: Variation in the inputs for real-time test using LCM IV 

Real time experiments results for predicting SAT using LCM Model 

RMSError (LCMModel): 1.9962 F 

- LCM Model-SAT 

SAT 

-SATSPT 

.m 

L / 

jd 

300 350 

Time (1 unit = 25 sec) 

Figure 6.4-3: Predicted SAT using LCM IV and actual SAT for real time test 
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Table 6.4-2: RMS error for real time study using LCM IV 

Results obtained for Real-time Study 

RMS error (°F) 

LCM IV 1.99 

6.4.3 Summary 

A simple lumped capacitance model was developed based on fundamental heat and mass 

transfer principles. The real-time test results showed that the lumped capacitance model can 

predict the dynamic behavior of a cooling coil without requiring geometric specifications of 

the cooling coil. LCM IV was able to predict SAT with an RMS error of 2°F over the entire 

range for the study. The performance of the model was improved when chilled water valve 

characteristics were considered. A Genetic Algorithm technique was able to find values for 

the constants in the model. In other studies, the model was applied in real-time tests to 

determine a better control system. 

6.5 Real-time Test Result Comparison for Predicting SAT using Different 

Models 

As discussed before, different models were developed for predicting the supply air 

temperature (SAT). To compare the real-time performance of the different models 

developed for predicting SAT, tests were conducted under the same conditions. Figure 6.5-1 

shows the variation in the inputs for the real-time test. Figure 6.5-2 shows the variation in 

predicted SAT for GRNN model I and GRNN model II. Table 6.5-1 show the RMS error in 

predicting SAT for the different models studied. 
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Realtime lest results using GRNN Models for predicting SAT 
RMS Error for Real System : 1.2104°F 

Time(1 unit = 30 sec) 

Figure 6.5-1: Variation in the inputs for SAT predicting models study 

Real time test results using GRNN Models for predicting SAT 

RMS Error: GRNN Model 1:1.65°F, GRNN Model II: 1.64° F 

1 

O 

I 

Time (1 unit = 30 sec) 

Figure 6.5-2: Real-time test results for predicted SAT using GRNN I and GRNN II 
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Table 6.5-1: RMS error for real-time test in predicting SAT using different models 

Real-time study results for predicted SAT 

using different models 

Model RMS error (°F) 

LCM IV 5.30 

NN 1.86 

GRNN I 1.65 

GRNN II 1.64 

Results for predicting SAT using different models to predicl SAT 

Error in predicting SAT using LCM IV: 5.30° F 

50 100 150 200 250 300 350 400 450 500 

Error in predicting SAT using NN Model: 1.86°F 

50 100 150 200 250 300 350 400 450 500 

Error in predicting SAT using GRNN Model 1:1.65°F 

50 100 150 200 250 300 350 400 

Error in predicting SAT using GRNN Model II: 1.64°F 

_l l_ 
0 50 100 150 200 250 300 350 400 450 500 

Time(1 unit = 30 sec) 

Figure 6.5-3: Errors for real-time tests in predicting SAT using different models 

Table 6.5-1 and Figure 6.5-3 show that the best results were obtained for GRNN model II 

and the worst for LCM IV of all the four models studied. The LCM IV predicted SAT lower 

than the actual. Results from the LCM IV and NN models were oscillatory compared to the 

GRNN models. 



www.manaraa.com

122 

Several different models developed for predicting SAT are discussed in Chapter 4. Based on 

the offline test results, only two models, the LCM IV and GRNN II models were studied 

further in real-time. Real-time tests were conducted and results are shown in Figure 6.5-4, 

Figure 6.5-5 and Figure 6.5-6. The GRNN model II was able to predict the SAT with slightly 

lower RMS error compared with the LCM IV. 

Real time performance results of GRNN model and LCM IV for predicting SAT 
RMSError LCM IV: 1.1513°F, RMSErrorGRNN Model II: 1.1714°F 

— SATSPT 
SAT 

LCM IV predected SAT 
GRNN model II predected SAT 

MAT 
EWT 
Valve Position 

I 
> 

s g 
o 

? 

E 

Time (1 unit = 30 sec) 

Figure 6.5-4: Real-time study results for predicting SAT using LCM IV and GRNN model II 
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Real time performance results of GRNN model and LCM IV for predicting SAT 
RMSError LCM IV: 1,15136F, RMS Error GRNN Model II: 1.1714°F 

SATSPT 

SAT 
LCM IV predected SAT 

GRNN model II predected SAT 

Valve Position 
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I 

Time (1 unit = 30 sec) 

Figure 6.5-5: Zoom-In Real time study results for predicting SAT using LCM IV and GRNN 

model II 

Real time performance resiits of LCM IV and GRNN model II for predicting SAT 
RMS Error LCM IV: 1.15°F 

Error in predicting SAT using LCM IV | 

< 

I 

Time (1 Unit = 30 sec) 

RMS Error GRNN Model II: 1.17°F 

5 Error in predicting SAT using GRNN Model 

! 

1 

Time (1 unit = 30 sec) 

Figure 6.5-6: Real-time study results for RMS error in predicting SAT using LCM IV and 

GRNN model II 
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6.6 Summary 

Different models, namely, Lump Capacitance models, GRNN models and Neural Networks 

models were studied offline and in real time for predicting SAT. For the offline study, the 

best results were obtained with GRNN models II and III which had RMS errors less than 

1.5°F. Further all these models were studied in real time. For initial real-time tests, GRNN II 

and III, NN models had better results with RMS errors within 1.8°F. But LCM IV had 

unacceptable results. More real-time tests were conducted using GRNN model II and LCM 

IV. The performance of these models was good and RMS error was less than 1.2°F for both 

the models. 



www.manaraa.com

125 

Chapter 7 Results for Adaptive Fuzzy Logic Controller (AFLC) 

7.1 AFLC using Genetic Algorithms (AFLC-GA) 

As discussed in the adaptive FLC section, Genetic Algorithms (GAs) were used to study 

different Fuzzy Rule Matrices (FRMs) generated by the following methods: 

• FRM obtained by random numbers generated between 1 and 11 

• Changing the Human FRM by random numbers generated amongst -1, 0, and 1 

without changing specific elements 

• Changing the Human FRM by random numbers generated amongst -1, 0, and 1 

without changing specific elements in the outer loop of the Human FRM 

For adapting FRMs using the GA technique, the linguistic representation of fuzzy 

membership functions (FMFs) for control actions are changed to a numeric representation as 

shown in Table 7.1-1. Last row in Table 7.1-1 shows the changes in the chilled water valve 

position for the numerical representation given in the second row. 

Table 7.1-1: Numeric representations of control action (u) for each FMF 

Control Action (u) 

Fuzzy Membership 

Function NL NM A# AVS NT ZE PT PVS PS PM PL 

Numerical Representation 1 2 3 4 5 6 7 8 9 10 11 

Control Action (change in 

chilled water valve 

position) 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
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7.1.1 FRM obtained by Random Numbers Generated between 1 through 11 

In this study, FRMs are initialized by generating random numbers between 1 through 11 for 

different possible fuzzy rule control actions. This type of initialization method provides much 

different FRMs than those generated based on human intuition. 

7.1.1.1 Offline Test 

An example FRM generated for the offline study is shown in Table 7.1-2. 

Table 7.1-2: Best FRM generated by random numbers between 1 through 11 for offline test 

Error Derivative (d) 

( c )  NL NM A# NVS NT ZE PT PVS PS PM PL 

A7- 3 10 7 2 11 3 6 3 1 8 8 

NM 8 7 3 1 5 6 2 1 6 9 7 

NS 8 8 11 5 1 8 8 3 2 5 6 

NVS 7 5 6 7 5 4 9 10 1 9 3 

NT 2 1 5 10 11 6 5 7 1 1 1 

y.E 11 8 11 8 11 9 2 3 4 8 11 

PT 3 9 1 4 8 9 9 2 3 10 2 

PVS 4 2 2 9 4 6 8 11 6 8 1 

PS 3 9 3 2 11 10 8 9 5 4 9 

PM 10 10 5 5 8 3 3 2 1 11 4 

PL 7 11 7 2 7 4 4 10 1 9 3 

Each FRM was generated from the random numbers between 1 through 11 using the GA 

technique. FRMs equal to the population size were generated. Using required parameters 

from the previous data except SAT, control actions were generated using FRMs for every 

data point. GRNN Model II was used to predict SAT for every control action. The RMS error 

for all the data points and for every FRM was calculated. Based on RMS error values, FRMs 

are sorted. The FRM having minimum RMS error was at the top and the FRM with 

maximum RMS error at the bottom. The two best FRMs, having the least RMS error, are 

reproduced to obtain two other FRMs. Reproduction was done by crossover and mutation 
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process (See Appendix F and Goldberg 1987 for more information) for predefined number of 

generations or until a termination criteria was reached. The termination criteria used in this 

project was zero RMS error. The number of generations defined the number of cycles for 

which reproduction process will be continued. For offline tests, the best generated FRM, 

shown in Table 7.1-2, having minimum RMS error resulted in poor FLC performance. Figure 

7.1-1 shows results for the offline test. 

Offline test results for AFLC-GA with FRM generated by generating random numbers between 1 through 11 
RMS error: 0.32°F 

â 

O 

I 

Time (1 Unit = 30 sec) 

Figure 7.1-1: Offline test results for the best generated FRM from the random numbers 

between 1 through 11 

7.1.1.2 Real-time Test 

For the real-time test, the same technique used for the offline test was used to generate 

FRMs. Table 7.1-3 shows that the FRM developed was not logical. For example, when the 

fuzzy membership in error is ZE and the fuzzy membership in derivative of error is ZE, there 

should have been zero control action. 
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For real-time tests, after every 60 minutes SATSPT was cyclically changed between 55°F 

and 65°F. After every 120 minutes, a new FRM was generated. This new FRM was generated 

during the real time study by using the GA technique. In this study FRMs equal to the 

population size are generated, sorted based on the RMS error after calculating the RMS error 

for each. The crossover and mutation operations are performed for the predefined number of 

generations on the two FRMs having minimum RMS error to obtain the best FRM. This best 

FRM had the least RMS error of all the FRMs for the data used in the study. This best FRM 

is then used for real-time test. After completion of one cycle, again a new best FRM was 

obtained as mentioned in the above process and used for real-time study. 

Table 7.1-3: Best FRM generated by random numbers between 1 through 11 for real-time 

test 

Error 

<<') 

Derivative (d) Error 

<<') NL NM A# NV5 NT ZE PT PVS PS PM PL 

NE 1 1 7 3 4 1 1 1 11 6 4 

NM 10 11 11 8 8 1 1 11 2 5 11 

NS 3 10 1 11 6 6 11 9 3 9 2 

NVS 11 10 11 7 1 6 11 2 7 1 4 

NT 6 7 1 1 1 7 1 11 11 2 9 

ZE 10 2 1 2 8 10 4 6 8 11 2 

PT 3 11 6 2 9 1 7 8 4 4 6 

PVS 7 3 9 7 5 5 6 1 9 1 10 

PS 1 6 1 9 1 10 11 7 11 9 6 

PM 10 1 11 2 4 7 1 11 8 1 2 

PL 1 5 8 7 6 11 5 3 7 1 11 
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Real-time test results for AFLC-GA with FRM generated by random numbers between 1 through 11 
RMSerror: 5.82° F 
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Time (1 Unit = 30 sec) 

Figure 7.1-2: Real-time test results using FRM generated by random numbers 

between 1 through 11 

From Figure 7.1-2, it is observed that results obtained for FRMs generated by random 

numbers using the GA technique resulted in poor FLC performance. Careful study of these 

FRMs showed that actions taken by the FLC were not correct, i.e. when the error was 

negative and decreasing, the chilled water valve should have been closed rapidly, but the 

opposite action was executed by opening the valve rapidly. Due to unacceptable performance 

of this FLC, another method for generating FRMs by changing the human FRM was studied. 

7.1.2 Changing Human FRM by Random Numbers Generated amongst -1, 0, and 1 

without changing Specific Elements 

Using the GA technique, different FRMs were generated by modifying the Human FRM 

which is given in Table 5.2-2. The elements in the human FRM were modified by a number 

generated randomly amongst -1, 0 and 1 without changing five elements. These five 

unchanged elements are the four corners and the center element from the human FRM. This 
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assured that when the error was zero and derivative of error was zero, no control action was 

generated. Also, fixing the four corners assured correct control action in extreme situations. 

The use of the human FRM as a reference helped to avoid generating very erratic FRMs. 

7.1.2.1 Offline Test 

For offline study, different possible FRMs were generated as mentioned in the previous 

section. Using data from previous experiments and GRNN model II for predicting SAT, for 

every data point control signals were generated for the FRM being studied. The RMS error 

for each FRM was calculated. Using the GA technique, the best FRM was found for the case 

studied. For the offline test, the best generated FRM, shown in Table 7.1-4, having minimum 

RMS error resulted in good FLC performance. Figure 7.1-3 shows results for the offline 

study. 

Table 7.1-4:FRM generated by changing Human FRM by random numbers generated 

amongst -1,0, and 1 without changing specific elements 

(Unchanged elements highlighted) 

Error Derivative (d) 

( f )  NE NM A# NVS NT ZE PT PVS PS PM PL 

NE 1 1 2 1 4 2 5 5 4 6 6 

NM 2 3 3 3 4 4 4 4 6 5 6 

NS 2 3 4 4 4 4 4 4 6 6 8 

NVS 3 3 2 5 3 4 4 5 8 7 7 

NT 4 4 4 3 5 4 5 6 6 8 7 

ZE 3 3 3 6 6 6 6 6 9 9 8 

I'T 3 3 5 4 6 7 6 8 7 8 10 

PVS 3 4 5 5 8 7 9 7 10 8 9 

PS 6 6 5 6 6 9 9 8 10 11 9 

PM 6 7 7 6 8 8 10 9 11 10 11 

PL 
6 8 7 9 7 8 8 10 10 11 11 
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The FRMs in Table 7.1-4 look more logical than those generated in Table 7.1-2. Figure 7.1-3 

shows results for the offline test. 

Offline test results for AFLC-GA with FRM generated by changing Human FRM without changing specific elements 
RMSerror: 0.20°F 

.1 
I 

I 
1 

Time (1 Unit = 30 sec) 

Figure 7.1-3: Offline test results for FRM generated by changing Human FRM by random 

numbers generated amongst -1,0, and 1 without changing specific elements 

7.1.2.2 Real-time Test 

The same GA technique used in the offline test to generate FRMs was used for real time 

experiments. For the real-time test, after every 60 minutes SATSPT was cyclically changed 

between 55°F and 65°F. After every 120 minutes, a new FRM was generated. New FRMs 

were generated for each cycle during the real-time study by using the GA technique. Using 

the initial population and performing crossover and mutation operations for the predefined 

generations, the best FRM was obtained. This best FRM had the least RMS error for the data 

used in the study and was used in real-time test. Table 7.1-5 shows one of the FRM generated 

for the real time test. 
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Table 7.1-5: FRM generated by changing Human FRM by random numbers generated 

amongst -1,0, and 1 without changing specific elements for real-time test (unchanged 

elements highlighted) 

lùror 

<c) 

Derivative (d) lùror 

<c) NL NM MS NT ZE PT PVS PM PL 

NL 1 1 1 1 2 2 4 4 4 4 6 

NM 1 2 2 4 2 2 3 4 5 7 5 

NS 3 1 2 3 4 4 4 3 7 8 7 

NVS 2 3 3 5 3 4 5 6 7 8 7 

NT 3 4 4 4 6 6 7 6 8 9 8 

/.!•: 4 3 4 4 5 6 7 8 9 7 8 

PI 3 5 4 4 7 7 7 9 8 8 9 

PVS 4 4 5 6 6 7 7 9 10 9 9 

PS 5 5 7 6 8 9 8 9 9 9 11 

PM 6 7 8 6 8 9 9 8 9 10 10 

PL 6 7 8 9 7 10 9 10 11 11 11 

Figure 7.1-4 shows the results for real-time test for this FRM. Though improved results were 

obtained for FLC, the SAT response was oscillatory and more valve action was observed. 

Similar results were obtained for other real-time studies. So, different method for generating 

better FRM was tried. 
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Real-time test results for AFLC-GA with FRM generated by changing Human FRM without changing specific elements 
Average RMS error: 8.68°F 

I 
s 

ï 

g-

Time (1 Unit = 30 sec) 

Figure 7.1-4: Real-time test results using FRM generated by changing Human FRM using 

random numbers generated amongst -1,0, and 1 without changing specific elements 

7.1.3 Changing Human FRM by Random Number Generated amongst -1, 0, and 1 

without changing Specific Elements in the Outer Loop of the Human FRM 

Another method that could improve FLC performance was to generate FRM s by restricting 

elements in the outer loop of the FRM. This method assured that when the system was out of 

control, correct control action will be taken. 

7.1.3.1 Offline Test 

Table 7.1-6 shows the FRM for minimum RMS error and Figure 7.1-5 shows the offline test 

results. Figure 7.1-5 shows that the FRM generated by changing the human FRM without 

changing elements in the outer loop had better control action than the previous methods 

studied. The RMS error for the offline study using this FRM was 0.19°F. 
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Table 7.1-6: FRM generated by modifying elements in the Human FRM without changing 

elements in the outer loop (unchanged elements highlighted) 

Error Derivative (dj 

( C I  X I .  NM m NT ZE PT PVS PS PM PL 

N l .  1 1 o 2 3 4 4 5 5 b b 

NM 1 2 2 3 4 4 5 5 6 b ft 

NS •> 2 3 4 4 5 5 6 6 b 7 

NY'S 2 3 4 4 5 5 6 6 6 7 7 

NT 3 4 4 5 5 6 6 6 7 7 8 

ZE 4 4 5 5 6 0 6 7 7 8 8 

PT 4 5 5 6 6 6 7 7 8 8 y 

PVS 5 5 6 6 6 7 7 8 8 9 10 

PS 5 6 6 6 7 7 8 8 9 10 10 

PM 6 6 6 7 7 8 8 9 10 10 11 

PL b 6 7 7 8 8 9 10 10 1 1 11 

Offline test results for AFLC-GA with FRM generated by changing Human FRM without changing outerloop elements 
RMSerror:0.19°F 

I 

! 

Time (1 Unit = 30 sec) 

Figure 7.1-5: Offline test results using FRM generated by modifying elements in the Human 

FRM without changing elements in the outer loop 



www.manaraa.com

135 

7.1.3.2 Real-time Test 

Table 7.17 shows the FRM without changing the elements in the outer loop generated for the 

real time study. 

Table 7.1-7: Fuzzy Logic Rule Matrix (11 by 11) generated without changing elements in the 

outer loop of the Human FRM (unchanged elements highlighted) 

Error Derivative (d) 

« • )  Nl. NM A# NT ZE PT PVS PS PM PL 

Nl. 1 1 1 2 3 4 4 5 5 6 6 

NM 1 n 1 3 4 4 5 5 6 6 6 

NS 2 2 3 4 4 5 5 6 6 6 7 

NVS 3 4 4 5 5 6 6 6 7 7 

NT 3 """ 4 4 4 5 6 6 6 7 7 8 

ZE 4 4 5 5 6 6 6 7 7 8 8 

PT 4 5 5 6 6 6 7 7 8 8 9 

PVS 5 5 6 6 6 7 7 8 8 9 10 

PS 5 6 6 6 7 7 8 8 8 10 10 

PM (i 6 6 7 7 8 8 9 10 11 11 

PI. 6 6 7 7 8 8 9 10 10 11 11 

Figure 7.1 6 show the results for the real-time test. It was observed that when SAT was more 

than SATSPT, correct control actions were generated which causes a decrease in SAT and 

visa-versa. Also decreased overshoot and faster rise times was observed. The RMS error for 

the real time study was 1.16°F. 
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Real-time test results tor AFLC-GA with FRM generated by changing Human FRM without changing outerloop elements 
Average RMS error: 1.17°F 

§ 

$ 

I 

Time (1 Unit = 30 sec) 

Figure 7.1-6: Real time test results for AFLC-GA with FRM generated by modifying the 

Human FRM without changing elements in the outer loop of the Human FRM 

7.2 Summary 

In this section, a method for developing an AFLC controller using Genetic Algorithms is 

discussed. Adaptive FLC controllers were developed offline and in real time by using 

Genetic Algorithms technique which generated different fuzzy rule matrix (FRM). 

For development of adaptive FRMs, the linguistic representation of fuzzy membership 

functions for control actions was changed to a numeric representation. 

Three different methods for generating FRMs are studied. In the first method, FRMs are 

initialized by generating random numbers between 1 through 11 for each element in the 

FRM. This method generated FRMs different than those generated by human intuition. The 

best FRM generated during the offline study had an RMS error of 0.316°F. But during real 
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time experiments, the same FRM resulted in poor performance of the FLC with an RMS 

error of 5.82°F. 

In the second method, FRMs were generated by changing every element in the Human FRM 

by a random numbers amongst -1,0, and 1 without changing the four corner and center 

elements of the Human FRM. This method of generating FRMs takes advantage of human 

intuition, thus avoiding generating absurd actions that cause large RMS errors. The best FRM 

generated during the offline study had an RMS error of 0.20°F. During the real time 

experiments, FRMs were evolved and the performance of the FLC improved and RMS error 

of 2.2°F was observed 

In the third method, FRMs were generated by changing the Human FRM by random numbers 

generated amongst -1,0, and 1 without changing the elements in the outer loop and the 

center element of the Human FRM. Using this method assured that FRMs generated would 

take correct control action when the system was out of control. Offline results showed an 

RMS error of 0.197°F, which was the least of the three methods studied, and real time 

experiments had an RMS error of 1.168°F. 

7.3 AFLC using Evolutionary Strategies (AFLC-ES) 

Two techniques used for the development of an AFLC using ES were evolving Scaling 

Factors and Mapping Factors. 

Scaling Factor 

A Scaling Factor is a number which is used to scale the input and/or output variables before 

the fuzzification and/or after defuzzification process respectively. One of the methods used 

to develop an adaptive FLC controller was to modify the scaling factors used for error (e), 

derivative of error (d) and control signal (u). Details for evolving scaling factors are given in 

section 5.3.3 

For the offline test, data from the previous experiments and GRNN Model II for predicting 

SAT were used. This data set includes values for CHWC-EWT, MAT, SATSPT, SACFM 
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and CHWP-GPM. Initially, the reference gene [0 0000000000 0] was used for the 

offline test. After every 240 sampling periods, a new gene was evolved. Offline test data 

included a step change in SATSPT. This allowed checking the response of new evolved 

scaling factors for a step change in SATSPT. 

Up to 3 bits of the total 12 bits from the parent gene were modified by randomly generated 

binary numbers to evolve new gene. Using this new gene, new scaling factors were 

calculated for e, d and u as explained in section 5.3.3 and then new fuzzy membership 

functions for the FLC. For the cycle of 240 data points, using GRNN model II to predict SAT 

for every data point, the RMS error between predicted SAT and SATSPT was calculated for 

every gene evolved. Smaller values of total RMS error indicate better FLC performance for 

that configuration of gene. If the RMS error using this new gene was less than the error for 

the parent gene, then this new gene replaces the parent gene and is evolved further. 

Otherwise, the new gene is discarded. This process of generating a new gene was continued 

for a predefined number of generations or a termination criterion is achieved. Termination 

criteria used for this study was zero RMS error. 

Mapping Factor 

A Mapping Factor is a number which modifies uniform fuzzy membership functions to non­

uniform fuzzy membership functions as shown in Figure 5.3-4. 

To develop an AFLC, another technique was to evolve powere, powerd, and poweru. Section 

5.3.4 gives details for application of mapping factors in development of an AFLC. For offline 

tests the reference gene was [0 0000000000 0]. Maximum and minimum values used 

for each factor are given in Table 7.3-1. 

Table 7.3-1: Maximum and Minimum values for each mapping factor 

Mapping Factor Minimum Value Maximum Value 

Error 1 3 

Derivative of error 1 2 

Control signal 1 3 
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Values of SFerror, SFderivative of error and SFcontrol signal were held constant at 10°F, 

5°F/s and 20% open/sampling period respectively while evolving mapping factors. 

Starting with the above reference gene, the offline test was initiated. After every 240 

sampling periods, a new gene was evolved by modifying part of the parent gene. Data used 

for this offline study had a step change in SATSPT. This allowed checking the response of 

the new evolved fuzzy membership functions for a step change in SATSPT. 

A new gene was evolved by modifying up to 3 bits, at a time, of the total 12 bits parent gene 

by randomly generated binary numbers. Using this new gene, new mapping factors are 

calculated for e, d and u as explained in section 5.3.4 and then new fuzzy membership 

functions are calculated. For the cycle of 240 data points, using the GRNN model II to 

predict SAT for every data point, the RMS error between predicted SAT and SATSPT was 

calculated for every evolved gene. Smaller values of total RMS error indicate better FLC 

performance of that gene. If the RMS error using this new gene is less than that of parent 

gene, then this new gene replaces parent gene and is evolved further. Otherwise, the new 

gene is discarded. This process of generating a new gene was continued for a predefined 

number of generations. 

7.3.1 Offline Test Results for AFLC-ES with evolving Scaling Factor 

Figure 7.3-1 shows the variation in the SAT for the best evolved genes obtained during the 

offline test. It also shows that FLC performance was good for SATSPT of 65°F but poor of 

55°F. Longer rise time was observed when SATSPT was 55°F. Real-time tests were 

conducting using the best gene generated for the offline test. 
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Offline test results for AFLC-ES when evolving Scaling Factor 
RMS error: 1,57°F 

Time (1 unit = 30 sec) 

Figure 7.3-1: Offline test results using scaling factor 

7.3.2 Real-time Test Results for AFLC-ES with evolving Scaling Factor 

For the real-time study, the best gene, [101000101 1 1 1], evolved in the offline test was 

used as a parent gene. Figure 7.3-2 shows results for AFLC when evolving scaling factors for 

three sets. It was observed that even though several genes were evolved, the FLC 

performance was deteriorating (results not shown in Figure 7.3-2). More oscillatory 

responses and more chilled water valve actions were observed. No improvement in the FLC 

performance was observed during real-time experiments. Thus, no further studies were 

conducted for evolving scaling factors. The RMS error for each cycle for real-time 

experiments is shown in the Table 7.3-2. 

Table 7.3-2: RMS error for real-time test with ES evolving scaling factor 

Cycle RMS error (°F) 

1 2.56 

2 2.22 

3 2.59 
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Real-time test results for AFLC-ES when evolving Scaling Factor 
RMS error: 2.44°F 
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Time (1 unit = 30 sec) 

Figure 7.3-2: Real time test results with varying scaling factor. 

(new scaling factor is evolved after every 90 minutes) 

7.3.3 Offline Test Results for AFLC-ES with evolving Mapping Factor 

As discussed in section 5.3.4, another technique to develop AFLC using ES was to evolve 

mapping factors. For the offline study, mapping factors were evolved as mentioned in section 

5.3-3. Figure 7.3-3 shows the variation in the SAT for better evolved genes during the offline 

test. It also shows that using this technique for evolving mapping factors works better than 

evolving scaling factors. 
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Offline test results for AFLC-ES when evolving Mapping Factor 

I 
I 
? 

I 

O 

Time (1 unit = 30 sec) 

Figure 7.3-3: Offline test results for AFLC with evolving mapping factor, 

(new mapping factor was evolved after every 120 minutes) 

7.3.4 Real-time Test Results for AFLC-ES with evolving Mapping Factor 

For the real-time test, the same parent gene used in the offline test was used as the initial 

gene and then evolved as tests proceeded. The same evolutionary technique explained in 

section 5.3.4 was used. Figure 7.3-4 shows the results obtained for the real-time test. Table 

7.3-3 shows total RMS error for each cycle of 120 minutes. It can be clearly observed that 

total RMS error was decreasing indicating improvement in the AFLC-ES performance. This 

shows the potential application of ES for evolve mapping factors to develop an Adaptive 

Fuzzy Logic Controller. 
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Real-time test results for AFLC-ES when evolving Mapping Factor 
RMS error: 0.64 °F 

I 
I 

! 
& 

Time (1 unit = 30 sec) 

Figure 7.3-4: Real-time test results for AFLC-ES with evolving mapping factor 

(new mapping factor was evolved after every 120 minutes) 

Table 7.3-3: RMS error resulted for real-time study of mapping factor 

Cycle RMS error (°F) 

1 0.99 

2 0.5 

3 0.5 

7.4 Summary 

In this chapter, methods to develop an adaptive FLC controller are discussed. Adaptive FLC 

controllers were developed offline and in real-time by using Genetic Algorithms to alter 

FRMs and Evolutionary Strategies to alter scaling factors and mapping factors. 

Three different techniques using Genetic Algorithm techniques were studied for generating 

FRMs in order to improve the performance of the AFLC. The best results using GA 
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technique were obtained for generating FRMs by changing elements from the human FRM 

without changing elements in the outer loop. This method of generating FRMs ensured 

correct control action when the system is out-of-control while utilizing the advantage of 

human expertise. 

Using the Evolutionary Strategies technique, scaling factors for error (e), derivative of error 

(d) and control signal (u) were altered simultaneously. The offline tests showed 

improvements in FLC performance. Real-time experiments were conducted, but no 

significant improvement in the FLC performance was observed. 

In another offline study using the Evolutionary Strategies technique, mapping factors were 

evolved. A mapping factor modified the fuzzy membership functions and hence the action 

taken by the FLC. These modifications were based on the uniform fuzzy membership 

functions and were bounded. Also fuzzy membership functions in error, derivative of error 

and control signal were modified simultaneously. The offline tests showed good results and 

demonstrated its usefulness for developing an adaptive FLC. Real-time results for AFLC-ES 

when evolving mapping factor were better and thus showed potential application for 

development of Adaptive Fuzzy Logic Controllers. 
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Chapter 8 Comparison test results for AFLC-GA/ES and PIDL 

8.1 Introduction 

An Adaptive Fuzzy Logic Controller (AFLC) was developed using the Genetic Algorithm 

(GA) and Evolutionary Strategy (ES) techniques to modify parameters in the AFLC. 

Experiments were conducted to compare the performance of the AFLC with that of the 

Proportional Integral Derivative Loop (PIDL) controller. 

As mentioned in the experimental facility description, the Energy Resource Station (ERS) 

combines laboratory testing capabilities with real building characteristics and is capable of 

simultaneously testing two side-by-side full-scale commercial H VAC systems with identical 

thermal loads. The side-by-side H VAC systems allow System A to be controlled by an 

AFLC, while System B is controlled by the EMC S using a PIDL controller. The controllers 

can be switched between the systems to remove any bias. Because each test system has the 

same loads (external and internal) and construction, the only difference in the comparison 

tests would be the operation and control methodologies. The performance of both the 

controllers in terms of chilled water valve travel, reduced energy usage, faster response time, 

reduced overshoot, and reduced settling time was compared and the benefits of the proposed 

operation and control methodology were quantified. 

Two different comparison tests were conducted, namely: 

• To study and compare the response of the controllers for changes in the supply air 

temperature set point (SATSPT). 

• To study and compare the response of the controllers for cyclic changes in the supply 

air volume flow rate (SA-CFM). 

After discussion with ERS staff, it was decided to vary SAT cyclically between 52°F and 

58°F. After conducting several real time experiments and discussing results of changing 

SATSPT tests with the ERS staff, the ERS manager (Klaassen, 2004) suggested conducting a 

second set of comparison tests that would have cyclic variations in SACFM with constant 

SATSPT of 58°F. These tests would be more realistic, since in commercial H VAC 
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applications, changes in the SATSPT are rarely observed, whereas sudden changes in 

SACFM are common to meet varying loads. 

The test conditions for the AHU settings for conducting the first comparison tests are given 

below: 

1. The system operation was scheduled to be in an occupied mode for 24 hours. 

2. The outdoor air damper position was set to be 0% open, exhaust air damper was set to 

be 0% open and return air damper was set to be 100% open. 

3. The economizer control was disabled. 

4. The AHU supply air pressure set point was 1.4 in. W.G., because two diffusers were 

employed for each zone. 

5. The zone temperatures were maintained between 70°F and 72°F. 

6. The supply air static pressure set point was at 2.0 W.G 

7. The minimum entering air flow rates were 400 cfm for the exterior zones and 100 

cfm for the interior zones for the A- and B-Test Systems. 

8. The supply air temperature set point was varied periodically between 52°F and 58°F. 

A test set up sheet that provides the details of real-time test conditions is provided in 

Appendix H. 

Figure 8.1-1 and Figure 8.1-2 show the variations in the Lighting and Baseboard load heat 

schedules respectively in the zones. Figure 8.1-3 shows the total load from lighting and 

baseboard. The same load schedule was maintained throughout these comparison tests 

conducted at the ERS. 
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Lighting Load Schedule 

tZ5 

Off 

CZ2 
Off 

0 2 4 6 8 10 12 14 16 18 20 22 24 

Time (hrs.) Noon 2 4 6 8 10 12 

Stage 1 - Window Side Light Fixtures Stage 2 - Door Side Light Fixtures 

Stage 1 - 195 Watts Stage 2 - 390 Watts 

Figure 8.1-1: Lighting load schedule in the zones 

Baseboard Load Schedule 

On 

Off 

«3 
Off 

0 2 4 6 8 10 12 14 16 18 20 22 24 

Time (hrs.) Noon 2 4 6 8 10 12 

Stage 1 - 900 Watts Window Side Stage 2 - 900 Watts Window Side 

Figure 8.1-2: Baseboard load schedule in the zones 
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Total Load Schedule 
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Figure 8.1-3: Total load schedule in the zones 

8.2 Comparison Test Results for Variation in SATSPT with AFLC-GA on 

AHUA 

In this comparison test, experiments were conducted with the AFLC controlling AHUA and 

PIDL controller controlling AHUB for variation in SATSPT. In this experiment, G As were 

used to develop the AFLC by evolving better FRMs. Since GAs were used to develop an 

Adaptive Fuzzy Logic Controller it was named AFLC-GA. The SATSPT was cyclically 

changed between 52°F and 58°F after every 45 minutes. 

Figure 8.2-1 shows the overall real-time results. It was observed that the AFLC-GA was able 

to control the chilled water valve position to maintain the SAT within +/- 3°F. Figure 8.2-2 

and Figure 8.2-3 show a zoom-in for the sections when the AFLC-GA had better 

performance. It is noticed from Figure 8.2-1, Figure 8.2-2 and Figure 8.2-3 that: 

1. The CHWC-EWT's were similar for both the AHU's and varied between 41°F and 

44°F. 

2. The MAT's were similar for both of the AHU's and varied between 69°F and 74°F. 
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The chilled water valve movement was more for AHUA with the AFLC. 

The SATSPT was simultaneously changed for both the AHU's. 

Real-time comparison test results for variation in SATSPT with AFLC-GA on AHUA 

r 
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SATSPT 
SATA-FLC 
SATB-PIDL 
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Figure 8.2-1: Comparison test results for variation in SATSPT 

Real-lime comparison test results for variation in SATSPT with AFLC-GA on AHUA 
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Figure 8.2-2: Zoom-in comparison test results for variation in SATSPT 



www.manaraa.com

150 

Real-time comparison test results for variation in SATSPT with AFLC-GA on AHUA 
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SATB-PIDL 
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Figure 8.2-3: Zoom-in comparison test results for variation in SATSPT 

8.2.1 RMS Error 

As mentioned earlier, the performance of the AFLC-GA was evaluated using the standard 

statistical measures of root mean square (RMS) error, which is defined as 

fl 
RMSError = -^(SAT-SATSPT) ... 8.2-1 

i=I 

where, 

SAT = Supply Air Temperature (°F) 

SATSPT = Supply Air Temperature Set-Point (°F) 

n = number of data patterns 

Table 8.2-1 and Figure 8.2-4 shows RMS error/cycle. One cycle is defined as changing 

SATSPT from 52°F to 58°F and then back to 52°F. It was noticed that for most of the cycles, 

the AHUA controlled by the AFLC-GA had higher RMS error compared to AHUB 

controlled by the PIDL controller, but it was decreasing with the number of cycles as the 

AFLC-GA adapted to the existing conditions. 
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Table 8.2-1 : Comparison of total RMS error/cycle between S ATA (AFLC-GA) and SATB 

(PIDL) for variation in SATSPT test 

Comparison Test Results for variation in SATSPT 

AFLC-GA on AHUA 

Average RMS error/cycle (°F/cycle) 

Controller 

AFLC-GA PIDL 

(AHUA) (AHUB) % Difference 

Cycle No. A B (A -B)*100/B 

1 0.94333 0.69722 35.30 

2 0.93278 0.74056 25.96 

3 1.0267 0.62333 64.71 

4 0.66889 0.35056 90.81 

5 0.87389 0.52333 6699 

6 0.89778 0.50722 77.00 

7 0.86944 0.53333 63.02 

8 0.79833 0.72611 9.95 

9 0.91 0.71778 26.78 

10 0.69611 0.36222 92.18 

11 0.81 0.66556 21.70 

12 0.745 0.59167 25.91 

13 0.72944 0.76111 -4.34 

14 0.67611 0.54944 23.05 

15 0.755 0.63111 19.63 

16 0.78056 0.62389 25.11 

17 0.83444 0.56167 48.56 

18 0.93833 0.67389 39.24 

19 0.73389 0.58778 24.86 

20 0.94778 0.705 34.44 

21 0.59556 0.66722 -12.03 

22 0.68833 0.69556 -1.05 

23 0.74389 0.64889 14.64 
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Comparison of RMS error for variation in SATSPT test with AFLC-GA on AHUA 
RMS error/cycle: AHUA 0.81°F/cycle, AHUB: 0.61°F/cycle 

—*— RMS error on AHUA(°F)/cycle 

-Q- RMS error on AHUB(°F)/cycle 

! 

Cycle Number (1 cycle = 90 minutes) 

Figure 8.2-4: Comparison of RMS error/cycle between AHUA (AFLC-GA) and AHUB 

(PIDL) for variation in SATSPT test 

Comparison Test Results for variation in SATSPT with AFLC-GA on AHUA 

—«—Average RMSError/Cycle on AHUA —•—Average RMSError/Cycle on AHUB 
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Figure 8.2-5: Comparison of RMS error/cycle with trend line between S ATA (AFLC-GA) 

and SATB (PIDL) for variation in SATSPT test 
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Figure 8.2-5 shows RMS error/cycle with a trend line. It is observed that the trend line for 

AHUA controlled by the FLC-GA has a downward slope whereas for AHUB controlled by 

the PIDL it has an upward slope. Thus it was expected that if this experiment would have 

been continued, RMS error/cycle for AHUA would have decreased further as the AFLC-GA 

adapted to the operating conditions. 

8.2.2 Hydronic Energy 

Using the methodology and equations explained in the performance indices section, the 

hydronic energy consumption for each cycle was calculated and is shown in Table 8.2-2. 

Table 8.2-2: Comparison of total hydronic energy/cycle consumption between AHUA 

(AFLC-GA) and AHUB (PIDL) for variation in SATSPT test 

Comparison Test Results for variation in SATSPT 

AFLC-GA on AHUA 

Average Hydronic Energy/Cycle (MBTU/Cycle) 

Cycle No. 

AFLC-GA 

(AHUA) 

A 

PIDL 

(AHUB) 

B 

% Difference 

(A -B)*100/B 

1 0.0835 0.0879 -5.09 

2 0.0830 0.0881 -5.86 

3 0.0869 0.0908 -4.31 

4 0.0876 0.0879 -0.33 

5 0.0820 0.0860 -4.66 

6 0.0834 0.0861 -3.06 

7 0.0855 0.0896 -4.53 

8 0.0866 0.0904 -4.23 

9 0.0841 0.0901 -6.62 

10 0.0862 0.0884 -2.54 

11 0.0841 0.0882 -4.68 

12 0.0872 0.0892 -2.24 

13 0.0866 0.0900 -3.77 

14 0.0864 0.0910 -5.03 

15 0.0877 0.0918 -4.49 
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Table 8.2-2: continued 
16 0.0878 0.0923 -4.89 

17 0.0881 0.0926 -4.92 

18 0.0851 0.0904 -5.83 

19 0.0851 0.0892 -4.53 

20 0.0834 0.0872 -4.34 

21 0.0847 0.0891 -4.90 

22 0.0849 0.0901 -5.75 

23 0.0872 0.0884 -1.32 

From the results in Table 8.2-2 and Figure 8.2-6, it is observed that the average hydronic 

energy/cycle for AHUA controlled by an AFLC-GA is approximately 4.3% less than for 

AHUB controlled by PIDL controller. 

Comparison of Hydronic Energy consumption for variation in SATSPT test with AFLC-GA on AHUA 
Average Hydronic Energy/cycle AHUA: 0.086 MBtiVcycle, AHUB : 0.089 MBtu/cyc(e 

-*— Hydronic Energy Consumption on AHUA (MBtu)Zcycle 

e - Hydronic Energy Consumption on AHUB (MBtu)/cycle 

Cycle Number (1 cycle = 90 minutes) 

Figure 8.2-6: Comparison of hydronic energy consumption /cycle on AHUA (AFLC-GA) 

and AHUB (PIDL) for variation in SATSPT test 
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8.2.3 Actuator Travel Distance 

Table 8.2-3: Comparison of total actuator travel distance/cycle between chilled water valve 

on AHUA (AFLC-GA) and AHUB (PIDL) for variation in SATSPT test 

Comparison test results for variation in SATSPT 

AFLC-GA on AHUA 

Average Chilled Water Valve Movement/Cycle 

Controller 

Cycle No. 

AFLC-GA 

(AHUA) 

A 

PIDL 

(AHUB) 

B 

% Difference 

(A -B)*100/B 

1 174.41 128.43 35.80 

2 118.93 114.59 3.79 

3 140.19 93.22 50.39 

4 89.46 53.96 65.79 

5 104.37 78.89 32.30 

6 118.15 80.74 46.33 

7 107.14 94.36 13.54 

8 104.16 118.76 -12.29 

9 130.13 116.62 11.58 

10 93.89 60.97 53.99 

11 138.05 108.68 27.02 

12 111 89.65 23.81 

13 138.56 132.77 4.18 

14 123.56 95.65 29.18 

15 142.1 102.08 39.20 

16 120.86 107.53 12.40 

17 128.16 87.82 45.93 

18 253.48 105.32 140.68 

19 126.91 93.1 36.32 

20 124.03 123.72 0.25 

21 163.84 115.21 29.68 

22 269.18 119.45 55.62 

23 142.86 95.21 50.05 
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Table 8.2-3 and Figure 8.2-7 show the total actuator travel distance/cycle (ATD/cycle). 

ATD/cycle for AHUA, controlled by an AFLC-GA, was approximately 35.0% more than for 

AHUB, controlled by PIDL controller. 

Comparison of chilled water valve movement for variation in SATSPT test with AFLC-GA on AHUA 
% chilled water valve movement: AHUA: 137.54, AHUB: 100.72 

—»— % Chilled water valve movement on AHUA 
- o- - % Chilled water valve movement on AHUB 

& 

E 

I 
> 

b- ' 

Cycle Number (1 cycle = 90 minutes) 

Figure 8.2-7: Comparison of actuator travel distance/cycle between chilled water valve on 

AHUA (AFLC-GA) and AHUB (PIDL) for variation in SATSPT test 

8.2.4 Rise Time, Overshoot and Setting Time 

Figure 8.2-8 shows the variation in SAT for AHUA and AHUB when AHUA was under 

FLC-GA and AHUB under PIDL control. CHWC-EWT was same for both the AHU's and 

had very little variation. Less than 2°F variation was observed in MAT. 

Both controllers were able to control the process within the required limits. Also controllers 

acted immediately to the step change in the SATSPT by changing the chilled water valve 

position to achieve the new SATSPT sooner. 
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Real time performance of Adaptive FLC (AFLC-GA) AFLC-GA on AHUA 

-SATSPT 
SATA-FLC 

- SATB-PIDL 
EWTA 
EWTB 
MATA 

- MATB 
- VLVA 
•• VLVB 

-w "X 

900 1000 

Time (1 unit = 30 sec) 

Figure 8.2-8: Variation in SAT for AHUA (AFLC-GA) and AHUB (PIDL) along with the 

other variables 

Figure 8.2-9 shows detail for the above process. From Table 8.2-4 it is observed that even 

though the controlled variable for PIDL had less rise time, it also had more overshoot as 

compared to an AFLC-GA. Also, the settling time for the PIDL was more than that of the 

AFLC-GA. 
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Real time performance of Adaptive PLC (AFLC-GA) AFLC-GA on AHUA 

62 

61 

60 

59 

Lp 
| 58 

£ 

57 

56 

55 

54 

840 860 880 900 920 940 960 

Time (1 unit = 30 sec) 

Figure 8.2-9: Case I - Comparison of rise time, overshoot and settling time between S ATA 

(AFLC-GA) and SATB (PIDL) for variation in SATSPT test 

Table 8.2-4: Case I - Comparison of rise time, overshoot and settling time between SATA 

(AFLC-GA) and SATB (PIDL) for variation in SATSPT test 

AFLC-GA 

(AHUA) 

PIDL 

(AHUB) 

Rise Time (sec) 15 7 

Overshoot (°F) 0.7 2.2 

Settling Time (Time Steps) 40 45 

Figure 8.2-10 shows another case. From Figure 8.2-10 and Table 8.2-5: Case II - it is 

observed that the controlled variable for the AFLC-GA had longer rise time but much less 

overshoot as compared to PIDL. Also, the settling time was less for AFLC-GA than for the 

PIDL. 

SATSPT 

SATA-FLC 

SATB-PIDL 
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Real time performance of Adaptixre PLC (AFLC-GA) AFLC-GA on AHUA 

— - SATSPT 

SATA-FLC 

-SATB-PIDL 

61 -

720 740 760 780 800 820 840 

"Time (1 unit = 30 sec) 

Figure 8.2-10: Case II - Comparison of rise time, overshoot and settling time between SATA 

(AFLC-GA) and SATB (PIDL) for variation in SATSPT test 

Table 8.2-5: Case II - Comparison of rise time, overshoot and settling time between SATA 

(AFLC-GA) and SATB (PIDL) for variation in SATSPT test 

AFLC-GA 

(AHUA) 

PIDL 

(AHUB) 

Rise Time (sec) 12 6 

Overshoot (°F) 0.6 1.3 

Settling Time (Time Steps) 12 22 

Figure 8.2-11 shows another case. From Table 8.2-6 and Figure 8.2-11 it is observed that 

even though the controlled variable for the AFLC-GA and PIDL had the same rise times, the 

AFLC-GA had less overshoot and a shorter settling time than the PIDL. 
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Real time performance of Adaptixe PLC (AFLC-GA) AFLC-GA on AHUA 

E 

980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 

Time (1 unit = 30 sec) 

Figure 8.2-11: Case III - Comparison of rise time, overshoot and settling time between SATA 

(AFLC-GA) and SATB (PIDL) for variation in SATSPT test 

Table 8.2-6: Case III - Comparison of rise time, overshoot and settling time between SATA 

(AFLC-GA) and SATB (PIDL) for variation in SATSPT test 

AFLC-GA 

(AHUA) 

PIDL 

(AHUB) 

Rise Time (sec) 3 3 

Overshoot (°F) 3.2 3.5 

Settling Time (Time Steps) 30 38 

SATSPT 

SATA-FLC 

SATB-PIDL 
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8.3 Comparison Tests Results for Variations in SACFM with AFLC-ES 

on AHUA 

For this comparison test, an ES technique was used to develop the AFLC-ES by evolving 

better fuzzy membership functions. The SATSPT was held constant at 58°F and the SACFM 

was varied from 1600 to 2200 in steps of 200 cfm every hour. The test conditions for the 

second comparison test were similar to those used in the comparison test for variation in 

SATSPT. Initially, experiments were conducted with the AFLC-ES controlling AHUA and 

the PIDL controller controlling AHUB and then with AFLC-ES on AHUB and PIDL on 

AHUA. A test set up sheet that provides the details of the experimental conditions is in 

Appendix H. Figure 8.3-1 shows the scheduled CFM for both of the AHU's. 

Schedule for SACFM 

2400 -i 

2200 -I -r— 1—| — 1— i—i r— 
i 

2 2000 |— |— |— |— |— 1— 

^ 1800 • |— |— 

1600 I— _____ 

1400 l  M M M M l  M -I- i  I  I  I  I  I — i l  i l  l  

0 4 8 12 16 20 

Hour of a Day 

Figure 8.3-1: SACFM schedule 

Figure 8.3-2 shows the overall real-time results. Figure 8.3-3 and Figure 8.3-4 show details 

for the sections when the AFLC-ES performance is better. It is noticed that: 

1. CHWC-EWT's were similar for both the AHU's and varied between 42°F and 45°F. 

2. MAT's were similar for both the AHU's and varied between 69°F and 74°F. 

3. The SATSPT was held constant at 58°F for both the AHU's. 
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Real-time comparison tesl results for variation in SACFM with AFLC-ES on AHUA 

- SATSPT 

SATA-FLC 
SATB-PID 

EWTA 

- - EWTB 

MATA 

MATB 

-—VLVA 

VLVB 

6000 8000 
Time (1 unit = 35 sec) 

Figure 8.3-2: Comparison test results for variation in SACFM 

Real-time comparison test results for variation in SACFM with AFLC-ES on AHUA 

- SATSPT 

— SATA-FLC 

— SATB-PID ' 

EWTA 

EWTB 

MATA 

-MATB 

—' VLVA 

VLVB 

2000 2200 
Time (1 unit = 35 sec) 

Figure 8.3-3: Zoom-in comparison test results for variation in SACFM 
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Real-time comparison test results for variation in SACFM with AFLC-ES on AHUA 

-SATSPT 

- SATA-FLC 

-SATB-PID 

EWTA 

EWTB 

MATA 

MATB 

-VLVA 

-VLVB 

1.035 

Time (1 unit = 35 sec) 

1.05 

x 104 

Figure 8.3-4: Zoom-in comparison test results for variation in SACFM 

Figure 8.3-5 shows the variation in the SATA and SATB with scheduled change in SACFM. 

It was observed that even though the SACFM was varied, the SATA and SATB were 

maintained almost within ±1°F by both controllers. 

Comparrsion Test Results whenAFLC ES controlling AHUA and PIDI controlling AHUB (Results lor 050304) 

SATA t-LC 

SATB-PID 

Time (1 uiit -1 mm) 

Schedule lor vanation in the Supply Air Flow Rate (?4 Hours) 

zr 

Time(1 unit = 1 mm) 

Figure 8.3-5: Variation in SATA (AFLC-ES) and SATB (PIDL) and SACFM schedule 
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Figure 8.3-6 through Figure 8.3-9 show the resulting SATA for the AFLC-ES and SATB for 

the PIDL controller along with the variation in the SACFMs in both AHU's. 

Comparison Test Results when AFLC-ES controlling AHUA and PIDL controlling AHUB (Results lor 050303, 0 4 AM) 

SATA-FLC 

SATB-PID -

Time (1 unn= 1 min) 

Vanation in the Supply Air Flow Rate 

Time(1 unii = 1 mm) 

Figure 8.3-6: Zoom-in (0 AM - 4 AM) for SATA and SATB along with variation in the 

SACFM for 2nd test day 

Compansion Test Results when AFLC-ES controlling AHUA and PIDl controlling AHUB (Results tor 050305. 0 -4 AM) 

> 

SATA-FLC 

- - SATB PID 

Time (1 mit - 1 min) 

Vanation in the Supply Air Flow Rale 

Time(1 unit - 1 min) 

Figure 8.3-7: Zoom-in results (0 AM - 4 AM) for SATA and SATB along with variation in 

the SACFM for 4th test day 
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Compansion Test Results when AFLC-ES controlling AHUA and PIDL controlling AHUB (Results lor 050306, 0 - 4 AM) 

Time (1 unit = I min) 

Variation in the Supply Air Flow Rate 

Time(l unit, t mm) 

Figure 8.3-8: Zoom-in results (0 AM - 4 AM) for SATA and SATB along with variation in 

the SACFM for 5th test day 

lT 55 

Vanation in the Supply Air Flow Rate 

Timed unn= 1 mm) 

Figure 8.3-9: Zoom-in results (0 AM - 4 AM) for SATA and SATB along with variation in 

the SACFM for 6th test day 

Thus it was observed that the AFLC-ES was able to control the chilled water valve position 

so as to maintain the SAT within 1 °F of the SATSPT. 

SATA PLC 

SATB-PID 

Compansion Test Results when AFLC-ES controlling AHUA and PIDL controlling AHUB (Results tor 050307. 0-4 AM) 

Time (1 init = 1 min) 

SACFM-SPT 

SACFMA 

SACFMB 
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8.3.1 RMS Error 

Table 8.3-1 and Figure 8.3-10 show hourly RMS error for the 7th day of the comparison test 

for variation in SACFM. Most of the hours with AHUA controlled by the AFLC-ES had 

almost 13% lower hourly RMS error as compared to that for AHUB controlled by the PIDL 

controller. The average hourly RMS error for the 7th day for the AFLC-ES on AHUA was 

0.24°F and 0.30°F for the PIDL on AHUB. 

Table 8.3-1: Comparison of average hourly RMS error between SATA (AFLC-ES) and 

SATB (PIDL) for variation in SACFM test 

Comparison test results for variation in SACFM 

AFLC-ES on AHUA 

Test Results for 3/8/05 

Average Hourly RMS error (°F) 

Controller 

Hour of a Day 

AFLC-ES 

(AHUA) 

A 

PIDL 

(AHUB) 

B 

% Difference 

(A -B)*100/B 

1 0.38935 0.50565 -23.00 

2 0.1985 0.14655 35.45 

3 0.1479 0.20522 -27.93 

4 0.29838 0.26793 11.36 

5 0.14137 0.36803 -61.59 

6 0.1655 0.10705 54.60 

7 0.2481 0.34435 -27.95 

8 0.1473 0.2726 -45.96 

9 0.4557 0.42648 6.85 

10 0.19833 0.19827 0.03 

11 0.1767 0.2088 -15.37 

12 0.20652 0.4377 -52.82 

13 0.32433 0.37288 -13.02 

14 0.27878 0.32337 -13.79 

15 0.3614 0.47737 -24.29 
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Table 8.3- : continued 
16 0.3676 0.39925 -7.93 

17 0.25678 0.33595 -23.57 

18 0.1855 0.21982 -15.61 

19 0.1799 0.1889 -4.76 

20 0.21518 0.30587 -29.65 

21 0.23458 0.41298 -43.20 

22 0.1469 0.2146 -31.55 

23 0.1203 0.20837 -42.27 

Comparison of RMS error in SAT for variation in SACFM test with AFLC-ES on AHUA System 
Hourly RMS error in SAT for AHUA System: 0.233°F, AHUB System: 0.301 °F 

-*— Hourly RMS error in SATA - AHUA System (°F) 

©- - Hourly RMS error in SATB - AHUB System (°F) 

§ 
| 

g 

Hour of a Day 

Figure 8.3-10: Comparison of average hourly RMS error between SATA (AFLC-ES) and 

SATB (PIDL) for variation in SACFM test 
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8.3.2 Hydronic Energy 

Table 8.3 2 and Figure 8.3 11 show the average hydronic energy/hr consumption. Most of the 

hours with AHUA controlled by the AFLC-ES had almost 6.2% lower hydronic energy/hr as 

compared to that for AHUB controlled by the PIDL controller. The average hydronic energy 

for the 7th day for the AFLC-ES on AHUA was 0.100 MBTU/hr and 0.115 MBTU/hr for the 

PIDL on AHUB. 

Table 8.3-2: Comparison of average hydronic energy/hr consumption between AHUA 

(AFLC-ES) and AHUB (PIDL) for variation in SACFM test 

Comparison test results for variation in SACFM 

AFLC-ES on AHUA 

Test Results for 3/8/05 

Average Hydronic Energy/hr (MBTU/hr) 

Controller 

Hour of a 

Day 

AFLC-ES 

(AHUA) 

A 

PIDL 

(AHUB) 

B 

% Difference 

(A -B)*100/B 

1 0.109 0.1136 -4.04 

2 0.1028 0.1106 -7.08 

3 0.1008 0.1067 -5.57 

4 0.0975 0.1055 -7.54 

5 0.1104 0.1160 -4.82 

6 0.1063 0.1130 -5.96 

7 0.0972 0.1036 -6.18 

8 0.0895 0.0980 -8.63 

9 0.1045 0.1062 -1.59 

10 0.1029 0.1109 -7.22 

11 0.0938 0.1027 -8.64 

12 0.0954 0.0999 -4.50 

13 0.1044 0.1116 -6.41 

14 0.0989 0.1076 -8.07 

15 0.0995 0.1061 -6.22 
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Table 8.3-2: continued 
16 0.0975 0.1042 -6.47 

17 0.1091 0.1166 -6.47 

18 0.1009 0.1092 -7.64 

19 0.0935 0.1022 -8.52 

20 0.0927 0.0965 -3.92 

21 0.1046 0.1083 -3.43 

22 0.1047 0.1126 -6.99 

23 0.0966 0.1028 -6.00 

Comparison of Hydronic Energy Consumption in AHUA and AHUB System for variation in SACFM test with AFLC-ES on AHUA System 
Hydronic Energy Consumption in AHUA System: 0.099 MBtiVhr, AHUB System: 0.106 MBtiVhr 

—*— Hydronic Energy Consumption in AHUA System (MBtu)/hr 

- ©• • Hydronic Energy Consumption in AHUB System (MBtu)/hr 

I 

o 

Hour of a Day 

Figure 8.3-11: Comparison of average hydronic energy/hr consumption between AHUA 

(AFLC-ES) and AHUB (PIDL) for variation in SACFM test 

8.3.3 Actuator Travel Distance 

Table 8.3-3 and Figure 8.3-12 show the total actuator travel distance/hr. AHUA controlled by 

the AFLC-ES had approximately 435.0% more valve movement than that for AHUB 

controlled by the PIDL controller. The average of total actuator travel distance for the 7th day 
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Table 8.3-3: Comparison of total actuator travel distance/hr between chilled water value on 

AHUA (AFLC-ES) and AHUB (PIDL) for variation in SACFM test 

Second Comparison Test Results 

AFLC-ES on AHUA 

Test Results for 3/8/05 

Average % Chilled Water Valve Movement/Hr 

Controller 

Hour of a 

Day 

AFLC-ES 

(AHUA) 

A 

PIDL 

(AHUB) 

B 

% Difference 

(A -B)*100/B 

1 96.58 56.10 72.17 

2 42.56 11.63 265.84 

3 75.56 14.92 406.52 

4 71.60 17.94 299.22 

5 120.91 19.74 512.67 

6 57.53 10.85 430.07 

7 47.87 14.20 237.03 

8 56.97 11.27 405.43 

9 63.47 17.69 258.71 

10 47.02 7.56 521.93 

11 54.73 6.21 780.94 

12 69.96 13.48 419.01 

13 57.04 14.85 284.11 

14 53.88 4.62 1065.98 

15 78.29 15.06 419.77 

16 73.56 16.85 336.63 

17 85.88 16.74 412.92 

18 34.55 7.13 384.33 

19 33.05 8.32 297.26 

20 51.59 11.59 345.27 

21 50.78 7.97 537.55 

22 83.80 9.19 812.32 

23 52.75 8.96 488.59 

for the AFLC-ES on AHUA was 63.47% valve movement/hr and 14.04% valve movement/hr 

for the PIDL on AHUB. 
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Comparison of % chilled water valve movement in AHUA and AHUB System for variation in SACFM test with AFLC-ES on AHUA System 
% Chilled water valve movemenfhr: AHUA System: 59.606. AHUB System: 12.742 

—*— % chilled water valve movement in AHUA System/hr 

- % chilled water valve movement in AHUB System/hr 

5 
<0 

I 

Hour of a Day 

Figure 8.3-12: Comparison of total actuator travel distance/hr between chilled water value on 

AHUA (AFLC-ES) and AHUB (PIDL) for variation in SACFM test 

Similarly the calculations for all six days when the FLC was controlling AHUA and AHUB 

were done. Table 8.3-4 and Figure 8.3-13 show the results for the performance indices 

obtained for the second comparison test when AHUA was controlled by the AFLC-ES and 

the PIDL was used on AHUB. 

Table 8.3-5 shows the percentage difference in the values for each of the performance indices 

for the AFLC-ES results as compared to the PIDL results. Negative percentage value of the 

performance indices means AFLC-ES performance was better than that of PIDL controller. 

The first column shows the percentage difference RMS error, the second column shows the 

% difference in the chilled water valve movement/hr and the third shows the percentage 

difference in hydronic energy/hr. The RMS error for the AFLC-ES was 24% less than for the 

PIDL controller; hydronic energy/hr was 5.9% less than that for the PIDL controller, whereas 

the AFLC-ES had 300% more valve movement/hr than the PIDL controller. 
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Table 8.3-4: Comparison of performance indices between AHUA (AFLC-ES) and AHUB 

(PIDL) for variation in SACFM test 

Comparison Test Results for variation in SACFM 
AFLC-ES on AHUA 

Test Date RMS error (°F) 
% Chilled water 

valve movement/hr 
Hydronic Energy 

(MBtu/hr) 
YMMDD AHUA AHUB AHUA AHUB AHUA AHUB 

50303 0.25 0.31 55.9 14.17 0.1008 0.1073 
50304 0.25 0.34 53.5 15.26 0.1015 0.1075 
50305 0.26 0.35 62.86 15.72 0.1029 0.1089 
50306 0.24 0.34 50.46 15.64 0.1028 0.1093 
50307 0.24 0.30 63.47 14.04 0.1005 0.1071 
50308 0.23 0.30 59.61 12.74 0.0989 0.1055 

Table 8.3-5: Percentage difference in performance indices between AHUA (AFLC-ES) and 

AHUB (PIDL) for variation in SACFM test 

Comparison test results for variation in SACFM AFLC-

ES on AHUA 

Percentage (AFLC-ES - PIDL)/PIDL 

RMS error 

% Chilled water 

valve movement Hydronic Energy 

-19.03 294.38 -6.06 

-28.42 250.69 -5.57 

-25.58 299.96 -5.49 

-29.10 222.54 -5.98 

-20.02 352.17 -6.18 

-21.65 366.91 -6.24 
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Comparison Test Results for variation in SACFM with AFLC-ES on AHUA and PIDL on AHUB 
Comparison Test Results for daily RMS Error (°F) 

-Daily RMSError 

Comparison Test Results for Hydronic Energy (MBtu'day) 

- Hydronic Energy/day 

Comparison Test Results for % chilled water valve movement (% chilled water valve movement/day) 

valve Movement/day 

050304 
Day of Experiment 

Figure 8.3-13: Percentage difference in performance indices between AHUA (AFLC-ES) and 

AHUB (PIDL) for variation in SACFM test 

8.3.4 Rise Time, Overshoot and Settling Time 

Figure 8.3-14 through Figure 8.3-16 shows the SAT response for both the systems. Figure 

8.3-14 shows that SATA for system A, controlled by the AFLC-ES, had 0.3°F overshoot 

whereas SATB for system B, controlled by PIDL, had 0.9°F overshoot. Also, the SAT 

settling time required for system A controlled by the AFLC-ES controller was approximately 

4 time steps less compared to system B controlled by the PIDL controller. 

Figure 8.3-15 shows another response of both the systems for a change in SACFM set point 

from 1800 to 2000 CFM. It was observed that SATA, controlled by AFLC-ES, had 0.3°F 

overshoot whereas SATB, controlled by PIDL, had 0.9°F. Also, the SAT settling time 

required for AFLC-ES controller was approximately 21 time steps less compared to the PIDL 

controller. 
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Second Comparison Tes! Results when AFLC-ES controlling AHUA and PIDL controlling AHUB (Results for 050303) 

SACFM-SPT 
SACFMA 
SACFMB 

Figure 8.3-14: Case I - Comparison of rise time, overshoot and settling time in SATA 

(AFLC-ES) and SATB (PIDL) for variation in SACFM test 

Second Comparision Test Results when AFLC-ES controlling AHUA and PIDL controlling AHUB (Results for 050303) 

-SATA-FLC 

SATB-PID 

Time (1 unit= 1 min) 

Time(1 unit= 1 min) 

SACFM-SPT 

-SACFMA 

SACFMB 

Figure 8.3-15: Case II - Comparison of rise time, overshoot and settling time in SATA 

(AFLC-ES) and SATB (PIDL) for variation in SACFM test 
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Figure 8.3-16 shows the response of SATA and SATB for SACFM set point changed from 

1600 to 2200 CFM in steps of 200 CFM. It was observed that for changes in the SACFM set 

point, for all the cases studied, overshoot in SATA for system A was less than 1°F and was 

always less than that of SATB for system B. Also SAT settling time was always less for the 

system A, controlled by AFLC-ES, compared to system B, controlled by PIDL. 

Second Comparison Test Results when AFLC-ES controlling AHUA and PIDL controlling AHUB (Results lor 050303) 

SATSPT 

—•—SATA-FLC 

- - - SATB-PID " 

1200 1250 1300 1350 1400 

Time (1 unit= 1 min) 

I 
3 

SACFM-SPT 

—•—SACFMA 

- - - SACFMB 

Tïme(1 unit = 1 min) 

Figure 8.3-16: Case II - Comparison of rise time, overshoot and settling time in SATA 

(AFLC-ES) and SATB (PIDL) for variation in SACFM test 

8.4 Comparison test results for variation in SACFM using AFLC-ES on 

AHUB 

As mentioned in the introduction, one of the various tasks for this study was to periodically 

switch the AFLC from one air handling unit to the other to eliminate any bias in one unit 

over the other. In the previous section, results when the AFLC-ES was controlling AHUA 

were discussed. In this section results when the AFLC-ES is controlling AHUB are 

discussed. 
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8.4.1 RMS Error 

Table 8.4-1 and Figure 8.4-1 show hourly RMS error for the variation in SACFM 

comparison test. Most of the hours with AHUB controlled by the AFLC-ES had almost 11% 

lower RMS error, excluding outliers, as compared to that for AHUA controlled by the PIDL 

controller. The average hourly RMS error for the 3rd day for AHUB (AFLC-ES) was 0.28°F 

and for AHUA (PIDL) was 0.31 °F 

Table 8.4-1: Comparison of average hourly RMS error between SATA (PIDL) and SATB 

(AFLC-ES) for variation in SACFM test 

Comparison test results for variation in SACFM 

AFLC-ES on AHUB 

Test Results for 4/2/05 

Average hourly RMS error (°F) 

Controller 

PIDL AFLC-ES 

(AHUA) (AHUB) % Difference 

Hour of a Day A B (B-A)*100/A 

1 0.3019 0.2121 -29.75 

2 0.1221 0.3434 181.23 

3 0.3394 0.3541 4.31 

4 0.5770 0.4182 -27.51 

5 0.3744 0.2933 -21.66 

6 0.1669 0.1795 7.52 

7 0.1897 0.1186 -37.50 

8 0.4809 0.3496 -27.31 

9 0.2456 0.1763 -28.22 

10 0.1125 0.1170 3.98 

11 0.3184 0.3515 10.38 

12 0.5314 0.4103 -22.79 
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Table 8.4-1: continued 
13 0.3915 0.5358 36.84 

14 0.2179 0.2036 -6.59 

15 0.4389 0.3723 -15.17 

16 0.4639 0.4347 -6.30 

17 0.3770 0.2855 -24.27 

18 0.3164 0.2814 -11.08 

19 0.3507 0.3707 5.72 

20 0.2109 0.1407 -33.28 

21 0.3554 0.3750 5.50 

22 0.2045 0.1528 -25.27 

23 0.1463 0.1275 -12.87 

Comparison of RMS error in SAT for variation in SACFM test with AFLC-ES on AHUB System 
Hourly RMS error in SAT - AHUA System: 0.324°F, AHUB System: 0.291 °F 

Hourly RMS error in SATA - AHUA System (° F) 

Hourly RMS error in SATB - AHUB System (° F) 

i 
s 

Hour of a Day 

Figure 8.4-1: Comparison of average hourly RMS error between SATA (PIDL) 

(AFLC-ES) for variation in SACFM test 

and SATB 
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8.4.2 Hydronic Energy 

Table 8.4-2 and Figure 8.4-2 show the average hydronic energy/hr consumption. Most of the 

hours with AHUB controlled by the AFLC-ES had almost 0.8% more hydronic energy/hr 

consumption as compared to that for AHUA controlled by the PIDL controller. The average 

hydronic energy for the 3rd day for the AHUA (PIDL) was 0.096 MBTU/hr and 0.097 

MBTU/hr for AHUB (AFLC-ES). 

Table 8.4-2: Comparison of average hydronic energy/hr consumption between AHUA 

(PIDL) and AHUB (AFLC-ES) for variation in SACFM test 

Comparison test results for variation in SACFM 

AFLC-ES on AHUB 

Test Results for 4/2/05 

Average Hydronic Energy/hr (MBTU/hr) 

Controller 

Hour of a 

Day 

PIDL 

(AHUA) 

A 

AFLC-ES 

(AHUB) 

B 

% Difference 

(B -A) *100/A 

1 0.1036 0.1024 -1.16 

2 0.0973 0.0966 -0.63 

3 0.0933 0.0955 2.38 

4 0.0930 0.0949 2.05 

5 0.1030 0.1007 -2.20 

6 0.0984 0.0997 1.32 

7 0.0904 0.0917 1.44 

8 0.0902 0.0919 1.94 

9 0.1023 0.1003 -1.94 

10 0.0969 0.0974 0.42 

11 0.0916 0.0942 2.87 

12 0.0913 0.0938 2.69 

13 0.0963 0.0958 -0.47 

14 0.0959 0.0976 1.75 

15 0.0985 0.0995 0.98 
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Table 8.4-2: continued 
16 0.0996 0.0998 0.18 

17 0.1031 0.1022 -0.87 

18 0.0985 0.1006 2.14 

19 0.0952 0.0987 3.67 

20 0.0887 0.0902 1.67 

21 0.1021 0.1000 -2.10 

22 0.0984 0.0986 0.16 

23 0.0899 0.0915 1.79 

Comparison of Hydronic Energy Consumption in AHUA and AHUB System for variation in SACFM test with AFLC-ES on AHUB System 
Hydronic Energy Consumption in AHUA System: 0.096 MBtu/hr, AHUB System: 0.097 MBtiVhr 

- +• - Hydronic Energy Consumption in AHUA System (MBtu)/hr 

—e— Hydronic Energy Consumption in AHUB System (MBlu)/hr 

0i 1 1 1 1 1 
0 5 10 15 20 

Hour of a Day 

Figure 8.4-2: Comparison of average hydronic energy/hr consumption between AHUA 

(PIDL) and AHUB (AFLC-ES) for variation in SACFM test 

8.4.3 Actuator Travel Distance 

Table 8.4 3 and Figure 8.4 3 show the total actuator travel distance/hr. AHUB controlled by 

the AFLC-ES had approximately 21.5% more valve movement than that for AHUA 

controlled by the PIDL controller. The average of total actuator travel distance for the 3rd 



www.manaraa.com

180 

day for AHUB (AFLC-ES) was 34.2% Valve Movement/hr and for AHUA (PIDL) 

was27.8% Valve Movement/hr. 

Table 8.4-3: Comparison of total actuator travel distance/hr between chilled water value 

AHUA (PIDL) and AHUB (AFLC-ES) for variation in SACFM test 

Comparison test results for variation in SACFM 

AFLC-ES on AHUB 

Test Results for 4/2/05 

Average % Chilled Water Valve Movement/hr 

Controller 

PIDL AFLC-ES 

Hour of a (AHUA) (AHUB) % Difference 

Day A B (B -A) *100/A 

1 64.7260 62.4080 -3.58 

2 14.1820 15.6130 10.09 

3 26.8920 34.0990 26.80 

4 43.2020 49.0300 13.49 

5 31.3520 35.2050 12.29 

6 19.0030 18.1550 -4.46 

7 19.4970 12.8530 -34.08 

8 37.9520 43.0560 13.45 

9 21.4610 26.1230 21.72 

10 12.9170 12.7040 -1.65 

11 29.2750 29.2690 -0.02 

12 41.6530 49.4580 18.74 

13 29.6900 69.5760 134.34 

14 22.8290 21.5860 -5.44 

15 35.7220 51.7340 44.82 

16 33.3120 45.8770 37.72 

17 29.9360 51.3990 71.70 

18 23.6130 40.8050 72.81 

19 27.7940 24.1590 -13.08 

20 15.3290 16.8640 10.01 

21 27.7580 47.6050 71.50 
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Table 8.4.3: continued 
22 16.7840 12.7930 -23.78 

23 13.8220 16.5070 19.43 

Comparison of % chilled water valve movement in AHUA and AHUB System for variation in SACFM test with AFLC-ES on AHUB System 
% Chilled water valve movement#: AHUA System: 28.362, AHUB System: 34.841 

% chilled water valve movement on AHUA/hr 
% chilled water valve movement on AHUB/hr 

1 

I 

Hour of a Day 

Figure 8.4-3: Comparison of total actuator travel distance/hr between chilled water value on 

AHUA (PIDL) and AHUB (AFLC-ES) for variation in SACFM test 

Similarly the calculations for all six days were done when the AFLC-ES was controlling 

AHUB and PIDL on AHUA. Table 8.4-4 shows different performance indices for both the 

controller. Table 8.4-5 and Figure 8.4-4 shows the percentage difference between the 

performance indices for AFLC-ES and PIDL controller. 
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Table 8.4-4: Comparison of performance indices between AHUA (PIDL) and AHUB 

(AFLC-ES) for variation in SACFM test 

Comparison test results for variation in SACFM 
AFLC-ES on AHUB 

Daily Average % Chilled water Hydronic Energy 
RMS error (°F) valve movement (MBtu/hr) 

AHUB 
AHUA (AFLC-

ExpData (PIDL) ES) AHUA AHUB AHUA AHUB 
50331 0.31 0.42 26.56 43 0.096 0.0966 
50401 0.33 0.28 29.64 35.97 0.0957 0.0968 
50402 0.32 0.29 28.36 34.84 0.096 0.097 
50403 0.33 0.28 28.69 38.68 0.096 0.0976 
50404 0.29 0.27 25.82 34.93 0.0968 0.0982 
50504 0.37 0.34 30.77 37.69 0.0967 0.0977 

Table 8.4-5: Percentage difference in performance indices between AHUA (PIDL) and 

AHUB (AFLC-ES) for variation in SACFM test 

Comparison test results for variation in SACFM 

AFLC-ES on AHUB 

% Percentage (AFLC-ES -PIDL)/PIDL 

RMS error 

% Chilled water 

valve Movement Hydronic Energy 

32.54 61.92 0.59 

-15.66 21.38 1.10 

-8.71 23.20 0.75 

-14.86 34.82 1.65 

-8.68 35.30 1.48 

-9.14 22.52 1.01 
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Comparison Test Results for variation in SACFM with AFLC-ES on AHUB and PIDL on AHUA 
Comparison Test Results tor daily RMS Error (»F) 

Daily RMSError 

050401 050402 050403 050404 050405 

Comparison Test Results for Hydronic Energy (MBtu/day) 

| O Hydronic Energy/day | 

Comparison Test Results tor % chilled water valve movement (% chilled water valve movement/day) 

- % Valve Movement/day | 

Day of Experiment 

Figure 8.4-4: Percentage difference in performance indices between AHUA (PIDL) and 

AHUB (AFLC-ES) for variation in SACFM test 

Table 8.4-6: Percentage difference in hydronic energy/day consumption for variation in 

SACFM test with AFLC-ES on AHUA and AFLC-ES on AHUB compared with PIDL 

Percentage hydronic energy saved by AFLC-ES 

Test Day Using AFLC-ES on AHUA Using AFLC-ES on AHUB 

1 -6.06 0.59 

2 -5.57 1.10 

3 -5.49 0.75 

4 -5.98 1.65 

5 -6.18 1.48 

6 -6.24 1.01 

Average -5.92 i 1 . 1 0  
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From Table 8.4-6, it was found that when the AFLC-ES was controlling System A, it 

consumed almost 5.9% less hydronic energy and when controlling System B, it consumed 

almost 1.1% more hydronic energy as compared with other system when controlled by PIDL 

controller. 

8.4.4 Rise Time, Overshoot and Settling Time 

Figure 8.4-5 shows the response of SATA and SATB for SACFM SPT changed from 1500 to 

2100 CFM in steps of 200 CFM. It was observed that for the changes in SACFM SPT, for all 

the cases, SATB, controlled by AFLC-ES, had overshoot less than 1°F and was always less 

than that of SATA, controlled by the PIDL. Also SAT settling time was always less for the 

system B, controlled by AFLC-ES, compared to system A, controlled by PIDL. 

Second Comparison Test Results when AFLC-ES controlling AHUB and PIDL controlling AHUA for 050402) 

SATSPT 

SATA-FLC 

SATB-PID 

I 

Time (1 unit = 1 min) 

- SACFM-SPT 

- -SACFMA 

SACFMB 

Time(1 unit= 1 min) 

Figure 8.4-5: Comparison of rise time, overshoot and settling time in SATB (AFLC-ES) and 

SATA (PIDL) for variation in SACFM test 
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8.5 Summary 

From the first comparison test results, in which the supply air setpoint was cyclically 

changed between 52°F and 58°F, it was observed that for most of the cycles, the AHUA 

controlled by the AFLC-GA had higher RMS error when compared to AHUB controlled by 

the PIDL controller, but it was decreasing with the number of cycles as it adapted to 

operating conditions. If the experiment would have been continued, RMS error/cycle for 

AHUA would probably have decreased further. Also, it was observed that the AFLC-GA 

controlling system A consumed 1 to 7% less hydronic energy/cycle than for system B 

controlled by the PIDL. For actuator travel distance, the ATD/cycle for AHUA, controlled by 

an AFLC-GA, was approximately 1 to 140% more than for AHUB, controlled by PIDL 

controller. 

From the control performance view point, the first comparison test which involved cyclic 

change in SATSPT between 52°F to 58°F, both of the controllers were able to control the 

process within +/- 1.5°F. It was observed that even though the controlled variable for PIDL 

had less rise time, it also had more overshoot as compared to an AFLC-GA. Also, the SAT 

settling time for the PIDL was more than for the AFLC-GA. 

From the second comparison test results, in which SATSPT was held constant at 58°F and 

SACFM was cyclically varied from 1600 to 2200 CFM in steps of 200 after every hour, the 

root mean square error between SAT and SATSPT, was 8 to 30% less for both A and B 

systems when the AFLC-ES was controlling them compared to when they were controlled by 

the PIDL. When the AFLC-ES was controlling AHUA and the PIDL on AHUB, considering 

the bias between the systems, the system using the AFLC-ES consumed 5 to 7% less 

hydronic energy compared to the system using the PIDL controller. When the AFLC-ES was 

controlling AHUB and the PIDL was on AHUA, the system using the AFLC-ES consumed 0 

to 2% more hydronic energy than the system using the PIDL controller. It was found that 

AFLC-ES caused more actuator travel distance (ATD) than the PIDL control. When the 

AFLC-ES was controlling system A, ATD was 220 to 400% more than for PIDL control. 
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When the AFLC-ES was controlling system B, ATD was 20 to 35% more. The feasibility 

and potential to save the energy for the adaptive PLC were demonstrated by these tests. 

From the control performance view point, for variation in SACFM comparison test which 

involved cyclic changes in SACFM between 1600 to 2200 cfm in steps of 200 cfm, both the 

controllers were able to control the process within +/- 1 °F. It was observed that for changes 

in the SACFM set point, for all the cases studied, overshoot in the controlled variable for 

AFLC-ES was less than 1 °F and was always less than that of the system controlled by PIDL. 

Also the SAT settling time was less for the system controlled by AFLC-ES, compared to 

system controlled by PIDL. 
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Chapter 9 Conclusions 

9.1 Details 

The objective of this study has been to develop, implement, and test an adaptive fuzzy logic 

controller on one of the air handling units at the IEC Energy Resource Station (ERS). This 

was accomplished by the following tasks: 

1. Develop and implement a manually tuned fuzzy logic controller (PLC) at the ERS 

2. Compare the performance of the PLC to current control strategies 

3. Develop and implement an adaptive PLC (AFLC) at the ERS 

4. Compare the performance of the AFLC to current control strategies 

A PLC was developed and implemented on a chilled water coil to control the chilled water 

valve position to maintain the supply air temperature (SAT) at its set point (SATSPT) value. 

Using a default fuzzy rule matrix, the PLC was able to control the SAT, but more tuning was 

necessary to obtain quicker response to SATSPT and environmental changes and to have 

minimal overshoot of the controlled variables, thus achieving an optimal performance. 

Lump Capacitance Models (LCM), Neural Network (NN) models and General Regression 

Neural Network (GRNN) models of the system were developed to help offline tuning of the 

PLC. The LC and GRNN models were used for developing an adaptive PLC. 

The LCMs were developed based on the basic principles of heat and mass transfer and the 

best LCM was able to predict the SAT within 2°F. The GRNN-II model developed with 18 

inputs, including 10 time steps of previous information for the SAT, is able to predict the 

SAT within 1°F. Two other models, the NN and GRNN-I, were able to predict the SAT 

within 4°F. 

Genetic Algorithms (GA) and Evolutionary Strategies (ES) were used to develop an adaptive 

PLC. The GA technique was used to modify the fuzzy rule matrix and ES technique was 
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used to modify fuzzy membership relationships in real-time experiments at the ERS. 

Improvements in the PLC performance were achieved, demonstrating that adaptive PLCs 

could be developed for H VAC applications. 

Two types of comparison tests were performed, the first with step changes in SATSPT 

between 52°F and 58°F and the second with cyclic variations in supply air flow rate 

(SACFM) for fixed SATSPT at 58°F. Both of the comparison tests were conducted for at 

least seven consecutive days without manual alteration of any FLC parameters. The FLC 

was used to control one of the A or B AHUs while the PIDL was used to control the other. 

Both of the systems had identical thermal loads. 

For the variation in SATSPT comparison tests using GA, the fuzzy rule matrix was adapted 

to achieve an optimal performance of an AFLC-GA controller. Depending on whether the 

AFLC-GA was controlling AHUA and the PIDL was on AHUB, or vice versa, the AHU 

using the AFLC-GA consumed 1 to 7% less hydronic energy than the AHU using a PIDL 

controller. Large variations in the percentage of hydronic energy consumption for the AHU 

using AFLC-GA controlling were observed since it was still adapting. When the AFLC-GA 

was controlling AHUA, initially larger RMS errors between SAT and SATSPT were 

observed compared to RMS errors on AHUB controlled by PIDL controller. But the RMS 

error for AHUA, controlled by the AFLC-GA, was decreasing. It was found that AFLC-GA 

caused more actuator travel distance (ATD) than the PIDL control. When AFLC-GA was 

controlling AHUA, ATD was 10 to 140% more. It was also observed that the controlled 

variable for the AFLC-GA system required 0 to 185% more rise time, had 9 to 68% less 

overshoot and required 11 to 45% less settling time as compared to the PIDL controlled 

system. 

For the variation in SACFM comparison tests using ES, the fuzzy membership functions 

were modified to achieve optimal performance of an AFLC-ES. When the AFLC-ES was 

controlling AHUA, the RMS error between supply air temperature (SAT) and supply air 

temperature set point (SATSPT), was 19 to 30% less compared to AHUB controlled by the 
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PIDL. When AFLC-ES was controlling AHUB, the RMS error was 9 to 15% less compared 

to AHUA controlled by the PIDL. When the AFLC-ES was controlling AHUA and the 

PIDL on AHUB, the system using the AFLC-ES consumed 5 to 7% less hydronic energy 

than the system using the PIDL controller. On the other hand, when the FLC was on AHUB 

and the PIDL was on AHUA, the system using an AFLC-ES consumed 1 to 2% more 

hydronic energy than the system using the PIDL controller. When an AFLC-ES was 

controlling either AHUA or AHUB, the RMS error between SAT and SATSPT was less than 

the PIDL controller. It was also found that the AFLC-ES caused more actuator travel 

distance (ATD) than for the PIDL control. When the AFLC-ES was controlling AHUA, ATD 

was 220 to 400% more and when an AFLC-ES was controlling AHUB, ATD was 20 to 35% 

more. It was also observed that the controlled variable for the AFLC-ES when controlling 

AHUA had 40 to 60% less overshoot and required 45 to 75% less settling time as compared 

to AHUB controlled by PIDL controller. It was also observed that the controlled variable for 

the AFLC-ES when controlling AHUB had 0 to 30% less overshoot and required 13 to 25% 

more settling time as compared to AHUA controlled by PIDL controller. 

9.2 Contributions 

The contributions of this study include: 

1. Development and implementation of an FLC for controlling the chilled water 

valve position on real air handling units; 

2. Development and validation of simple Lump Capacitance, Neural Network, and 

General Regression Neural Networks cooling coil models that do not require 

extensive information about the H VAC systems; 

3. Development and implementation of an AFLC in a commercial building by using 

Genetic Algorithms and Evolutionary Strategies to modify fuzzy rule matrix; and 

fuzzy membership functions; and 

4. Experimentally comparing the performance of the AFLC with a standard PIDL 

controller. 
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9.3 Recommendations 

The findings of this study provide a better understanding about adaptive fuzzy logic 

controllers, including the experimental validation and analysis of test data to determine how 

the AFLC performs when it is applied to a real H VAC system. Different cooling coil models 

were also investigated. Because the AFLC shows the potential of saving system energy, more 

research is needed in the future to enhance the capabilities of the AFLC. Some 

recommendations for the future study include: 

1. More normalization tests are needed to define the bias between the A- and B-

Test Systems at the ERS from a statistical viewpoint. 

2. More experiments need to be conducted when both the systems are using 

AFLC; 

3. Additional studies are needed to examine the modeling of the AHU cooling 

coil; 

4. For the cooling coil model, moisture effects should be included to allow the 

model to be applicable to a wider range of conditions; 

5. Application of data clustering for training the neural network cooling coil 

models should be studied; 

6. More studies for updating techniques for neural networks, used in the cooling 

coil model, are needed; 

7. To deal with missing and erroneous data, an auto associative neural network 

should be studied; 

8. Conduct more validation tests without 100% recirculation of return air to 

compare the AFLC with the PIDL; and 

9. More validation tests are needed to compare the AFLC with the PIDL. 
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Appendix A Energy Resource Station (ERS) Air Handling 

Unit (AHU) and Cooling Coil Specifications 

Table A-l: AHU Specification 

AHU Equipment Specification 

Component Capacity 

AHUA and AHUB 

Flow 

Rate 

Speed Static 

Pressure 

Power 

Cfm rpm psi bhp 

Supply Fan 3200 1834 1.75 2.98 

Return Fan 3200 1257 1.5 1.21 

Table A-2: Cooling Coil Specifications 

Cooling Coil Parameters AHUA and AHUB 

Parameters Value 

Number of rows 6 

Number of tubes per row 18 

Tube Material 1/2 in. std copper 

Tube Enhancement internal 

turbulators 

Fin Type wavy plate 

Fin Material aluminum 

Fin Spacing, fins/ft 115 

Fin Thickness, in 0.0075 



www.manaraa.com

192 

Table A-3: ERS data points and accuracy for the sensors used 

Data point Point Name Units Accuracy 

chilled water flow rate CHWPGPM gpm ± 0.09 gpm (0-18 gpm) 

± 0.5% rdg (18-180 

gpm) 

plus ± 0.03 gpm 

chilled water pump power CHWPWAT W ± 0.2% reading 

cooling coil discharge air 

temp. CHWCDAT °F ± 0.25°F 

cooling coil entering water 

temp. CHWCEWT °F ± 0.25°F 

cooling coil leaving water 

temp. CHWCLWT °F ± 0.25°F 

cooling coil mixed water 

temp. CHWCMWT °F ± 0.25°F 

cooling valve control CHWCVLV % open n/a 

duct static pressure SASP in. W.G. ± 0.025 in. W.G. 

duct static pressure set point SASPSPT in. W.G. n/a 

exhaust air damper position EADP % open n/a 

heating coil discharge air 

temp. HWCDAT °F + 0.25°F 

mixed air temperature MAT °F ± 0.25°F 

outdoor air damper position OADP % open n/a 

outdoor air flow rate OACFM cfm 

± 2% of rdg (> 500 

fpm) 

+ 10 fpm (< 500 fpm) 

recirculated air damper 

position RADP % closed n/a 
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Table A-3: continued 

return air flow rate RACFM cfm 

± 2% of rdg (> 500 

fpm) 

±10 fpm (< 500 fpm) 

return air humidity RAHUMD %RH ± 2% RH (0-90%RH) 

± 3% RH (90-

100%RH) 

return air temperature RAT °F ± 0.18°F 

return fan differential 

pressure RFDP in. W.G. + 0.025 in. W.G. 

return fan differential 

pressure RFDP in. W.G. ± 0.025 in. W.G. 

return fan power RFWAT W ± 0.2% reading 

return fan speed RFSPD % Speed n/a 

return fan vfd start/stop RFSST start/stop n/a 

return fan vfd status RFSTS on/off n/a 

return vfd alarm RFALM normal/alarm n/a 

sum of zone air flow rate RMTCFM cfm n/a 

supply air flow rate SACFM cfm 

± 2% of rdg (> 500 

fpm) 

± 10 fpm (< 500 fpm) 

supply air humidity SAHUMD %RH ± 2% RH (0-90%RH) 

± 3% RH (90-

100%RH) 

supply air temp, set point SATSPT °F n/a 

supply air temperature SAT °F ± 0.18°F 

supply fan differential 

pressure SFDP in. W.G. ± 0.025 in. W.G. 

supply fan power usage SFWAT W ± 0.2% reading 

supply fan speed SFSPD % speed n/a 
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Table A-3: continued 
supply fan vfd start/stop SFSST start/stop n/a 

supply fan vfd status SFSTS on/off n/a 

supply vfd alarm SFALM normal/alarm n/a 
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Appendix B DDE (Matlab, 2001) 

B.l DDE Concepts and Terminology 

Applications communicate with each other by establishing a DDE conversation. The 

application that initiates the conversation is called the client. The application that responds to 

the client application is called the server. 

When a client application initiates a DDE conversation, it must identify two DDE parameters 

that are defined by the server: 

• The name of the application it intends to have the conversation with, called the 

service name. 

• The subject of the conversation, called the topic. 

When a server application receives a request for a conversation involving a supported topic, 

it acknowledges the request, establishing a DDE conversation. The combination of a service 

and a topic identifies a conversation uniquely. The service or topic cannot be changed for the 

duration of the conversation, although the service can maintain more than one conversation. 

During a DDE conversation, the client and server applications exchange data concerning 

items. An item is a reference to data that is meaningful to both applications in a conversation. 

Either application can change the item during a conversation. 

B.2 DDE Advisory Links 

You can use DDE to notify a client application when data at a server has changed. For 

example, if you use MATLAB to analyze data entered in an Excel spreadsheet, you can 

establish a link that causes Excel to notify MATLAB when this data changes. You can also 

establish a link that automatically updates a matrix with the new or modified spreadsheet 

data. 
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MATLAB supports two kinds of advisory links, distinguished by the way in which the server 

application advises MATLAB when the data that is the subject of the item changes at the 

server: 

• A hot link causes the server to supply the data to MATLAB when the data defined by 

the item changes. 

• A warm link causes the server to notify MATLAB when the data changes but 

supplies the data only when MATLAB requests it. 

You set up and release advisory links with the ddeadv and ddeunadv functions. MATLAB 

supports links only when MATLAB is a client. 

Different DDE functions used in program are: 

• ddeadv Set up advisory link 

Initiate DDE conversation 

Send data to application 

Request data from application 

Release advisory link 

• ddeinit 

• ddepoke 

• ddereq 

• ddeunadv 
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Appendix C Fuzzy Logic (Driankov, 1993) 

Fuzzy logic (FL) is about the relative importance of precision. It is considered to be a 

mathematical logic system which is aimed at providing a model for modes of human 

reasoning that are approximate rather than exact. FL is a tool for embedding human 

knowledge into workable algorithms. It is a convenient way to map an input universe of 

discourse to an output universe of discourse. 

FL is a rule base that consists of a collection of fuzzy IF-THEN rules. The fuzzy inference 

engine uses these rules to determine a mapping from the fuzzy sets in the input universe of 

discourse to fuzzy sets in the output universe of discourse based on the fuzzy principles. An 

ordinary set membership function takes only two values {0, 1} and is considered to be a crisp 

set. A fuzzy set membership function can take any real value from 0 to 1 and can closely 

represent human thinking. 

This part of report is divided into: 

• Fuzzy Sets and Logical Operators 

• Membership Functions 

• Fuzzy Rule Base 

• Fuzzy Inference System 

• Fuzzification 

• Defuzzification 

• Centroid Defuzzification Method 

C.l Fuzzy Sets and Logical Operators 

Fuzzy set operations are analogous to crisp set operations. The important thing in defining 

fuzzy set logical operators is that if we keep fuzzy values to the extremes i.e. 1 (True) or 0 

(False), the standard logical operations should hold true. In order to define fuzzy set logical 

operators, let us first consider crisp set operators. The most elementary crisp set operations 
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are union, intersection, and complement, which essentially correspond to OR, AND, and 

NOT operators, respectively. 

Let A and B  be two subsets of U .  The union of A and B ,  denoted A u 6 , contains all 

elem e n t s  i n  e i t h e r  A  o r  B ;  t h a t  i s  J U A  u  « ( X )  =  l , i f x C A o r x C B .  T h e  i n t e r s e c t i o n  o f  A  a n d  B ,  

denoted A n B, contains all the elements that are simultaneously in A and 5; that 

is, JUA n „(x) = 1, if x G A and x G B. The complement of A is denoted by A, and it contains all 

elements that are not in A; that is JUA(X) = 1, if x 6 A and JUA(X) = 0, if x G A. The truth tables 

for these operators are shown in Table C-l. 

Table C-l: Truth tables for AND, OR, and NOT operators. 

AND OR NOT 

A B A n B  A B A u B  A Â 

0 0 0 0 0 0 0 1 

0 1 0 0 1 1 1 0 

1 0 0 1 0 1 

1 1 1 1 1 1 

In FL, the truth of any statement is a matter of degree. In order to define FL operators, we 

have to find the corresponding operators that preserve the results of statement using AND, 

OR, and NOT operators. The answer is min, max, and complements operations respectively. 

These operators are defined, respectively, as 

J UA  U — max[//M,, 

jiAr,B{x) = mint//.,»,//,»>] 

J U A ( X )  = 1 -//A(X) 

The formulas for AND, OR, and NOT operators in the above Equations are useful for 

proving the other mathematical properties about sets; however, min and max are not the only 

ways to describe the intersection and union of two sets. 
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Let U be a collection of objects and be called the universe of discourse. A Fuzzy Set F in U is 

characterized by a membership function pF: U— [0, 1], with |iF(u) representing the grade of 

membership of u G U in the fuzzy set F. The curve which represents the grade of 

membership is called a Membership Function. 

C.2 Membership Functions 

A Membership Function is a curve that defines how each point in the universe of discourse 

(input space) is mapped to a membership value (or degree of membership) between 0 and 

1 .The only condition which a membership function must satisfy is that it must vary from 0 to 

1. The function itself can be an arbitrary curve whose shape is user defined as a function that 

suits the application from the point of view of simplicity, convenience, speeds and efficiency. 

Various types of membership functions are used, including triangular, trapezoidal, 

generalized bell shaped, Gaussian curves, polynomial curves, and sigmoid functions. 

Triangular curves depend on three parameters a, b, and c and are given by 

0 if x < a 

x — a . - r , 

if xe \a, c\ 
/ \ c~a 

H(x) = 
b - x . T—- if xe[c,b] 
b - c  1  '  

0 if x > b 

...C-l 

A plot of a Triangular Membership Function is shown in Figure C-l 

o 

M 

a c b Universe of 
Discourse 

Figure C-l : Triangular Membership Functions 
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To use this fuzzy logic system for practical problems, where inputs and outputs are real 

valued variables, a fuzzifier is added to the inputs and a defuzzifier is added to the output. 

The basic configuration of FL System is shown in Figure C-2. 

Fuzzy Fuzzy 
Defuzzifier Fuzzifier 

Fuzzy Rule Base 

Fuzzy Inference 
Engine 

Sets in x Sets in û 

Figure C-2: Basic configuration of Fuzzy Logic System 

The fuzzifier maps real variables in x to fuzzy sets in x and the defuzzifier maps fuzzy sets 

in Û to real variables u. 

C.3 Fuzzy Rule Base 

A Fuzzy Rule Base consists of a collection of fuzzy IF-THEN rules in the following form: 

R 1: IF xl is Fll and ....and xn is Fnl then y is Gil 

where, 

x 1 xn are the inputs and y are the outputs from the FL system, respectively. 

Fll and Gil are fuzzy sets in U and V, respectively. 

Let M be the number of fuzzy IF-THEN rules in the form of the above equation in the fuzzy 

rule base, 1 = 1,2 ...,M. The Fuzzy Rule Base is the core of the FL system used to interpret 

these rules and make them usable for specific problems. 

C.4 Fuzzy Inference System 

Fuzzy inference is the process of formulating the mapping from a given input to an output 

using FL. The mapping then provides a basis from which decisions can be made. The process 
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of fuzzy inference involves use of membership functions, fuzzification, fuzzy rule base, 

aggregation of output sets, and defuzzification. 

C.5 Fuzzification 

The first step is to take the inputs and determine the degree to which they belong to each of 

the appropriate fuzzy sets via membership functions. The input is always a real numerical 

value limited to the universe of discourse of the input variable and the output is a fuzzy 

degree of membership in the qualifying fuzzy sets. 

C.6 Defuzzification 

Several methods for defuzzification are used in practice, including the centroid, maximum, 

mean of maxima, height, and modified height defuzzifiers. The most popular defuzzification 

method is the centroid method, which calculates and returns the center of gravity of the 

aggregated fuzzy set. 

A fuzzy inference system maps an input vector to a real output value. In order to obtain a real 

output, we need a defuzzification process. The input to the defuzzification process is a fuzzy 

set (the aggregated output fuzzy set), and the output of the defuzzification process is a single 

number. For the current project, the centroid defuzzification method is used for 

defuzzification. 

C.7 Centroid Defuzzification Method 

In this method, the defuzzifier determines the center of gravity (centroid) of membership 

values and uses that value as the output of the FL System. For an aggregated fuzzy set, the 

centroid is given by 

>' = ... C-2 
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where, y — [0,1] Often, discrete variables are used so that y' can be approximated using 

summations instead of integration. 

-  c-3  

Y,My)dy 
i=1 

The centroid defuzzification method finds the "balance" point of the solution fuzzy region by 

calculating the weighted mean of the output fuzzy region. It is the most widely used 

technique because, when it is used, the defuzzified values tend to move smoothly around the 

output fuzzy region. The technique is unique, however, and not easy to implement 

computationally. The method of centroid defuzzification is illustrated in Figure C-3. 

Center of 
Gravity 

h/3 

Figure C-3: Centroid Defuzzification Method 

C.8 Example for Fuzzification Process 

Fuzzification is the process by which a real value is converted into membership values of the 

fuzzy set. This maps every real value to memberships from 0 to 1 in the elements of the 

fuzzy set. 
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In order to explain fuzzification process, considered membership functions for error, 

derivative of error and control signal as shows in Figure C-4, Figure C-5, and Figure C-6 

respectively and data shown in 

Table C-2. 

e 

NL PS PM PL NM NS ZE 

6 • 4 - 2 - 1 0 1 2  4  6  10 -10 

Figure C-4: Membership Functions for Error 

NL PS PM PL NM NS ZE 

6 -10 • 4 - 2 - 1 0 1 2  4  6 10 

Figure C-5: Membership Functions for derivative of error 

u 

PS Z 3 NM NS PM PL NL 

0.2 0.4 0.6 -0.6 -0.4 -0.2 1.0 0 

Figure C-6: Membership Functions for Control Signal 
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Table C-2: Sample Data from the ERS AHUA 

Sr. No. SAT SATSPT Error 

Derivative 

of Error Control Signal 

Chilled water 

valve position 

°F °F °F 

"F/Sampling 

Period (sec) 

% Change in 

valve position % Open 

1 62.08 60 2.08 0.11 0.21 61.52 

2 61.86 60 1.86 -0.22 -0.43 61.1 

3 62.08 60 2.08 0.22 0.44 61.54 

4 61.86 60 1.86 -0.22 -0.44 61.1 

5 62.08 60 2.08 0.22 0.44 61.54 

SAT is set at 60°F and current SA Temp is 61.86 °F. So the error is 1.86 degree F. Then 

using the membership functions for error, the approximate values for memberships in the 

error fuzzy set are: 

NL = Negative Large = 0.0 

NM - Negative Medium = 0.0 

NS = Negative Small - 0.0 

ZE = Zero = 0.65 

PS = Positive Small = 0.75 

PM = Positive Medium = 0.0 

PL = Positive Large = 0.0 

Using information from the previous time steps provided in Table C-2, the second value of 

derivative of error is calculated as -0.22°F/Sampling Period (61.86 - 62.08°F/1 sec). Now 

using the membership functions for derivative of error, the approximate values for 

memberships in the derivative fuzzy set are: 

NL = Negative Large = 0.0 

NM = Negative Medium = 0.0 

NS = Negative Small = 0.45 
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ZE = Zero = 0.85 

PS = Positive Small = 0.25 

PM = Positive Medium = 0.0 

PL = Positive Large = 0.0 

Once the fuzzy error and derivative sets are known, FL is used to obtain the fuzzy output set. 

To continue with the above example, the following rules are active: 

If (error is ZE) and (derivative is NS) then (control signal = NS) 

If (error is ZE) and (derivative is ZE) then (control signal = ZE) 

If (error is ZE) and (derivative is PS) then (control signal = PS) 

If (error is PS) and (derivative is ZE) then (control signal = PS) 

If (error is PS) and (derivative is NS) then (control signal = ZE) 

If (error is PS) and (derivative is PS) then (control signal = PM) 

All the other rules have zero antecedents (the conditions in the "if" part were all zero). 

C.9 Example for Defuzzification Process 

Using the active rules, the fuzzy control signal output will depend on all the above cases. 

U = (0.0, 0.0, 0.45, 0.85, 0.35, 0.10, 0.0) 

The values for the memberships in the fuzzy set are determined by the strength of application 

of each rule as shown in Figure C-l. 

u 

PS NS NM PM PL NL 

0.2 0.4 0.6 -0.6 -0.4 -0.2 0 1.0 1.0 

Figure C-7: Defuzzification of Output (Centroid Method) 
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The defuzzification of the control signal output is performed by calculating the centroid of 

the area under the curve (in bold) shown in Figure C-l. This value is 0.4. So the valve 

position will be changed to 61.5 % open from its current position of 61.1% open. The value 

of control signal output is dependent upon the magnitude of error and derivative of error. 

Zero control signal output assumes no change in the valve position. 
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Appendix D Neural Networks 

(Matlab, 2001) 

D.l Simple Neuron 

A neuron with a single input and no bias is shown on the left side of Figure D-1 and with bias 

on the right side. 

Input Neuron without bias 

f  \  ( \  
Input Neuron with bias 

f \ ( > 

> / p _ n ^ 2 f i  ^ j' a  

7 
x L 

~ f 'Uvp) a =/( \rp+ b) 

Figure D-1: Simple Neuron Network 

where, 

p = input 

w = weight 

f = transfer function 

a = output 

b = bias, 

a = f(wp +b) 

with b = 0, 

a = f(wp) 

This above network is trained by adjusting w and b to get desired output for the inputs 

provided. 
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D.2 Transfer Functions 

Various transfer functions are available to provide output depending upon the magnitude of 

the input. Some common examples are discussed below: 

1. Hard-Limit Transfer Function 

A Hard-Limit Transfer Function is shown in Figure D-2. Output from this 

function is 0 if the input is less than 0 and the output is 1 if the input is greater or 

equal to 0. 

a 
A+1 

0 

-1 
a — hardtimfn) 

Figure D-2: Hard-Limit Transfer Function 

2. Linear Transfer Function 

A Linear Transfer Function is shown in Figure D-3.Output can take any value, 

depending upon the input/s value. Input may vary from positive infinity to 

negative infinity. 

y 
/ 

-/I 
0 > 

"-i 
a -  purchfi(n) 

Figure D-3: Liner Transfer Function 

3. Tan-Sigmoid Transfer Function 

A Tan-Sigmoid Transfer Function is shown in Figure D-4. Output from this 

function varies from -1 to 1. Input may vary from positive infinity to negative 

infinity. 
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t+L 

"-L 
j  = tan aitu 

Figure D-4: Tan-Sigmoid Transfer Function 

D.3 Neuron with Multiple Inputs 

Figure D-5, shows a single layer NN with multiple (R) inputs and one neuron. Let pi, p2 

pR be the R inputs, let wl, 1, wl, 2, wl, R, be the weights, wl, 1 is the weight 

connection between first neuron and first input. Similarly, wl, 2, = is the weight connection 

between first neuron and second input, b is bias. 

The output n = wl, 1 * pi + wl, 2 * p2 wl, R * pR + b 

Input General Neuron 

r < 

V J V_L 
= /lWp+fc) 

Figure D-5: Neuron with Multiple Inputs 

D.4 Neural Network Architecture 

A one layer network with R inputs and S neurons in a single hidden layer is shown in Figure 

D-6. 

Input Layer o1 Neurons 

r  
Input Layer of Neurons 

+> L 

R j ^ S-1  

a= f (Wp + b) 

a = f (Wp + bj 
Where. y? = numberol 

elements in 
input vector 

S = numberol 
neurons in layer 

Figure D-6: Generalized Neural Network with a single Hidden Layer Architecture 
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where, 

P = input vector, 

R = number of elements in input vectors, 

S = number of neurons in layer, 

wsr = weight from sst neuron to rst input, 

bs = bias associated with sst neuron, 

ns = net input to the transfer function = £(WSR *PR) + b. 

as =scalar output associated with sst neuron, 

Each input is weighted with an appropriate w. The sum of the weighted inputs and the bias 

forms the input to the transfer function f. Tan-Sigmoid (tansig) and Linear (pureline) 

Transfer Function are used in the model. Neurons may use any differentiable transfer 

function f to generate their output. Use of sigmoid neurons in the last layer restricts the 

outputs of the network over a small range, hence linear neurons are used which provide any 

value of the network output. 

D.5 Feedforward Network 

Feedforward networks generally have one or more hidden layers, followed by an output 

layer. Multiple layers of neurons with nonlinear transfer functions allow the network to learn 

nonlinear and linear relationships between inputs and output vectors. The linear output layer 

produces the network output in the range of-1 to +1, if a linear transfer function is used and 

in the range of 0 to 1 if a logsig transfer function is used. 

Figure D-7 shows generalized NN architecture, with logsig as a transfer function. Figure D-7 

shows NN architecture used for the project. The tansig transfer function is used in the hidden 

layer and pureline in the output layer for one neuron. 



www.manaraa.com

211 

Input Hidden Layer Output Layer 

a t  « tansig (lWupi +fau a i  =piirdio fLWuai +bij 

Figure D-7: General Function Approximator 

where, 

IW = Input Weight Matrices, 

LW = Layer Weight matrices, 

a = output, 

D.6 Backpropagation Algorithm 

The different training algorithms for feedforward networks use the gradient of the 

performance to determine how to adjust the weights to minimize performance. A technique 

which involves performing computations backward through the network is called 

Backpropagation and is derived using the chain rule of calculus. 

Backpropagation learning updates the network weights and biases in the direction in which 

the performance function decreases most rapidly - the negative gradient. An iteration of this 

algorithm can be written as: 

...D-1 

where, 

xk is a vector of current weights and biases, 

gk is the current gradient, and 

ak is the learning rate. 

Incremental and Batch modes are two different ways in which this gradient descent algorithm 

can be implemented. In the incremental mode, the gradient is computed and the weights are 
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updated after each input is applied to the network. In the batch mode all the inputs are 

applied to the network before the weights are updated. In this project, batch mode is used 

during training and incremental mode is used for updating the network. 

D.7 Fast Training Algorithms and Learning Rate 

Fast training algorithm uses standard numerical optimization techniques and heuristic 

techniques to analyze the performance of the standard steepest descent algorithm. A fast 

training algorithm that uses standard numerical optimization techniques is used in this 

project. 

With standard steepest descent, the learning rate is held constant throughout training. The 

performance of the algorithm is very sensitive to the proper setting of the learning rate. If the 

learning rate is set too high, the algorithm may oscillate and become unstable. If the learning 

rate is too small, the algorithm will take too long to converge. It is not practical to determine 

the optimal setting for the learning rate before training, and, in fact, the optimal learning rate 

changes during the training process, as the algorithm moves across the performance surface. 

The performance of the steepest descent algorithm can be improved if we allow the learning 

rate to change during the training process. An adaptive learning rate will attempt to keep the 

learning step size as large as possible while keeping learning stable. The learning rate is 

made responsive to the complexity of the local error surface. 

First, the initial network output and error are calculated. At each epoch, new weights and 

biases are calculated using the current learning rate. New outputs and errors are then 

calculated. If the new error exceeds the old error by more than a predefined ratio, the new 

weights and biases are discarded. In addition, the learning rate is decreased. Otherwise, the 

new weights are kept. If the new error is less than the old error, the learning rate is increased. 

This procedure increases the learning rate, but only to the extent that the network can learn 

without large error increases. Thus, a near-optimal learning rate is obtained for the local 

terrain. When a larger learning rate could result in stable learning, the learning rate is 

increased. When the learning rate is too high to guarantee a decrease in error, it gets 

decreased until stable learning resumes. 
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Appendix E Sensitivity Analysis 

To study the effect of each variable on predicted SAT, a sensitivity analysis was performed. 

To conduct this study, one input variable to a NN model was varied over its operating range 

in fixed steps, keeping the other variables constant and the output was recorded. Since the 

NN was trained on the data taken during actual operation, the resulting analysis is for the 

combined coil/control system. 

Sensitivity Analysis in the present study has 15 parameters, namely; 

1. CHWC-EWT - Chilled Water Coil Entering Water Temperature 

2. CHWC-LWT - Chilled Water Coil Leaving Water Temperature 

3. CHWC-MWT - Chilled Water Coil Mixed Water Temperature 

4. CHWC-VLV - Chilled Water Coil Value Position (% Open) 

5. CHWP-GPM - Chilled Water Pump Flow Rate (GPM) 

6. EA-DMPR - Exhaust Air Damper (% Open) 

7. MA-TEMP - Mixed Air Temperature 

8. OA-CFM - Outside Air Flow Rate (CFM) 

9. OA-DMPR - Outside Air Damper (% Open) 

10. OA-TEMP - Outside Air Temperature 

11 .  RA-CFM - Return Air Flow Rate (CFM) 

12. RA-DMPR - Return Air Damper (% Closed) 

13. RA-TEMP - Return Air Temperature 

14. SA-CFM - Supply Air Temperature 

15. SATSPT - Supply Air Set Point Temperature 

which are considered as input variables to the NN model. The analysis was performed to 

check how the SAT changes as each of the input parameters was varied in the operating 

range, with other parameters held constant at the base case. 

The advantage of using sensitivity analysis is to show how significant any given input 

variable is in determining SATPRED. This is done by displaying the range of possible SAT 

for a range of input values for each parameter. This assists in making a decision whether a 

particular parameter should be included in the NN modeling or not. It also helps to identify 
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critical input parameters that need to be monitored for data collection and analysis in order to 

check for erroneous data and the performance of the NN model. The operating range used for 

each parameter was determined from previously collected data. Histograms for the previous 

data sets are shown in Figure E-l and Figure E-2 

SAT Vs CHWC-ëWT SAT Vs CHWC-LWT 

SATVs dmvc-Mwr 

SAT VS MAT 

5GG0 

&TVs ##-VL# .. : 

75 85 95 

I 
30 40 50 , 60 70 500.: 1000 . 1500 2000 

Figure E-l: Training Data Distribution -1 

*104 SATVsCiADMPR 

i 
^ * * 

I 
« : ?» 

L 
45 50 55 .60 ' 85 70. 75 

SAT Vs OA-TEMP 

4000 

2300 

80 100. 

I 
sSvs 

; 0 . SOD 10ÉKI. I SOD 2000 2500 300C 

Figure E-2: Training Data Distribution - II 
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This NN model was trained with all the above mentioned study parameters. This trained NN 

has 15 input parameters, 15 nodes in the hidden layer and one output (predicted SAT). The 

trained NN has RMS error of 0.8. 

The effect of each parameter for its operating range on SAT was studied, holding other 

parameters constant at their base case values. Base case values were found using the above 

histogram results as an average of operating range and occurrence of maximum value Table 

E-l provides the base case and variation in operating range for each studied input. 

Table E-l: Base Case and Variation in each input for Sensitivity Analysis study 

Parameter Base Case Variation 

EWT (°F) 45 35-2-55 

LWT (°F) 60 45-2-75 

MWT (°F) 50 40-2-60 

CHWC VLV Position 

(% Open) 50 0-5-100 

CHWP-GPM (GPM) 8 4/1/2012 

EA-DMPR (% Open) 50 0-5-100 

MAT (°F) 70 60-1-80 

OA-CFM (CFM) 200 0-20-400 

OA-DMPR (% Open) 50 0-5-100 

OAT (°F) 50 0-5-100 

RA-CFM (CFM) 1000 0-100-2000 

RA-DMPR (% Close) 50 0-5-100 

RAT (°F) 75 65-2-85 

SA-CFM (CFM) 1800 600-100-3000 

Note: Three numbers in variation column are minimum value for that variable, step size in 

which that variable was incremented and maximum value for that variable respectively. 
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Simulations were performed for all the cases and results were recorded. Figure E-3 and Table 

E-2 show the variation in SAT for changes in the inputs for the most significant parameters. 

SAT Vs CHWC EWT 

70 
65 

50 -
45 

SAT Vs CHWC_LWT 

45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 

SAT Vs VLV Position 

65 

50 

45 

Figure E-3: Results for Sensitivity Analysis Study 

Table E-2: Result for Sensitivity Analysis Study 

Parameter 

SAT 

Variation 

EWT (°F) 16.65 

LWT (°F) 11.63 
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Table E-2: continued... 
MWT (°F) 3.91 

CHWC VLV Position (% Open) 6.66 

CHWP-GPM (GPM) 1.00 

EA-DMPR (% Open) 8.00 

MAT (°F) 7.51 

OA-CFM (CFM) 3.88 

OA-DMPR (% Open) 8.06 

OAT (°F) 13.62 

RA-CFM (CFM) 9.39 

RA-DMPR (% Close) 1.25 

RAT (°F) 18.90 

SA-CFM (CFM) 16.34 

Table E-2 suggested CHWC-EWT, CHWC-LWT, CHWC-VLV Position, MAT, CHWP-

GPM, and SA-CFM should be used as inputs to the NN in predicting the SAT. These 

variables cause the largest SAT variations. Even though it is observed from Table E-2 that 

OAT, RAT, OA-DMPR and EA-DMPR have significant effect in SAT, effects of these 

variables will be resulted in change in MAT. So to keep the NN model simple and with less 

number of inputs only MAT was considered. 
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Appendix F Genetic Algorithms 

F.l Introduction 

A Genetic Algorithm is an optimization technique based on the evolutionary processes found 

in nature. It is very flexible and robust and thus suitable for many optimization problems. 

In a FLC, it is difficult to construct optimal Fuzzy Rule Matrix (FRM) and membership 

functions. Based upon the parameters in the FRM, control actions are taken for a particular 

system for which it is developed. Genetic Algorithms (GAs) can be used to find optimal 

values for the FLC parameters. Figure F-l shows a Flow Chart for GAs. 

Explanation of each step of the GA 

1. Representation of Problem in GA 

Before a GA can be initialized, a representation for the problem must be done. The 

real world problem must be encoded in the form of binary or integer genes. In this 

study, to keep the problem analogous with the FRM and easy to understand, a non-

binary gene of membership values is used for the representation. 

Two ways were considered for aligning the FRM values: 

• Row Form 

• Spiral Form (Spiral moving outside from the center) 

2. Initialization 

The initial population is randomly generated within a range of values. 

3. Generalization 

Maximum generation is the number of times a new population will be created from 

the old population. Generation is a loop counter. The number of generations in a GA 

should be executed is population size and problem dependent. 
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Generation < Max 
Generations? _ 

Done 

Reproduction 

Fitness Calculation 

Crossover 

Mutation 

Initialization 

Elitist Strategies 

Problem Representation 

Generation = Generation + 1 

Figure F-1 : Flow chart for GA 

4. Calculating Fitness Function 

In a H VAC control system, a controller which drives the system to zero error and 

zero derivative of error is considered to be a better controller. Using this mean, RMS 

error of a point defined by error (x-axis) and derivative of error (y-axis) is used as a 

Fitness Function or Figure of Merit (FOM). 

Fitness Function = RMSERROR = /—^(SAT-SATSPT)' ... F-l 
V n 

i= l  
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GAs will be used to evolve different sets of FRM and Fitness Functions to improve 

FLC performance. 

In this case, other potential fitness functions could be rise time, overshoot, controller 

travel, etc. 

5. Elitist Selection Strategies 

Elitist Section Strategies ensure that the best individuals are never lost in the 

transition from one generation to the next. Elitism is a technique used to create an 

early convergence by ensuring the survival of the best member in each population. 

Elitism compares the members of the most recent generation to the members of the 

previous generation. It then combines the two generations and determines the best 

members from both generation in the decreasing order of fitness function value or 

FOM. The elitist selection policy carries forward the fittest individual from the 

previous generation into the next generation. 

6. Tournament Selection for Reproduction 

Tournament selection randomly chooses members from the population for 

reproduction. A Fitness Ranking technique is used to sort the members in a 

tournament. Two different tournament sizes, 4 and 7, are studied. 

The two fittest members, called parents, based upon the fitness function value are 

selected from the population and are combined to reproduce two new members, 

called children in the Crossover Step. 

7. Crossover 

Crossover is the primary genetic operator which promotes the exploration of new 

regions in the search space. Crossover is a structured, yet randomized mechanism of 

exchanging information between genes. Standard Crossover begins by selecting two 

members previously placed in the mating pool during reproduction. A crossover point 

is then selected at random and information from one parent, up to another crossover 

point, is exchanged with the other member. This creates two new members for the 

next generation. Single and Standard Two Point Crossover are studied in this project. 
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Single Point Crossover: 

This operator randomly chooses a crossover point and exchanges the subsequences 

before and after that point between two genes to create two offsprings 

For example: 

1st Gene - [1 0 1 0 0 1 0 1 0 0 1 1] 

2nd Gene -[001110101010] 

And crossover position is 4th 

After crossover, following offsprings are created 

1st Offspring - [10 10 10 10 10 10] 

2nd Offspring -[00 1 1 0 1 0 100 1 1] 

Two Point Crossover: 

This operator randomly chooses two crossover points and exchanges the 

subsequences after 1st crossover point until 2nd crossover point between two genes to 

create two offsprings 

For example: 

1st Gene -[1 0 1 00 1 0 1 00 1 1] 

2nd Gene -[001110101010] 

And crossover positions are 4th and 8th 

After crossover, following offsprings are created 

1 s t  O f f s p r i n g  - [ 1  0  1  0 1 0  1  0 0 0  1  1 ]  

2nd Offspring -[001101011010] 

8. Mutation 

Mutation is a secondary operator. This operator ensures that all the points in the 

solution space have a chance of being searched. Generally, mutation is performed by 

toggling the binary bits. Since integers are used in the representation system, a 

random number for all the possible representative integers is generated and 

exchanged with the randomly selected number. 

For example: 

Gene -[1 0 1 00 1 0 1 00 1 1] 



www.manaraa.com

222 

Say three locations namely 2nd, 5th and 9th bit are randomly selected for mutation. In 

the present study mutation bit is replace by binary number generated randomly. In 

this example, since three numbers are chosen for mutation three binary numbers are 

generated randomly. Let 0, 1, 1 be these three binary numbers generated randomly, 

then offspring is: 

Gene -[1 0100 1 0 1 00 1 1] 

O f f s p r i n g  - [ 1 0 1 0 1 1 0 1 1 0 1 1 ]  
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Appendix G Evolutionary Strategies 

(http://csepl.phy.ornl.gov/CSEP/MQ/NODE44.html) 

Evolution Strategies (ES) are in many ways very similar to Genetic Algorithms (GAs). As 

their name implies, ES too simulate natural evolution. The differences between GAs and ES s 

arise primarily because the original applications for which the algorithms were developed are 

different. While GAs were designed to solve discrete or integer optimization problems, ESs 

were applied first to continuous parameter optimization problems associated with laboratory 

experiments. 

ES were introduced in the 1960s by Rechenberg [65] working in Berlin and further 

developed by Schwefel [66]. The first numerical simulations were performed by Hartmann 

[64], and the first attempts at using ESs to solve discrete optimization were made by 

Schwefel [67]. 

Like GAs, ES differ from traditional optimization algorithms in some important respects: 

1. They search from one population of solutions to another, rather than from individual 

to individual. 

2. They use only objective function information, not derivatives. 

3. They use probabilistic, not deterministic, transition rules. 

The basic structure of an ES is very similar to that of a basic GA. One minor change from the 

standard optimization routine flow diagram is the use of the word population' rather than 

"solution'. A more major difference is that the usual operation of generating a new solution 

has been replaced by three separate activities — population selection, recombination and 

mutation. It is in the implementation of these operations that the differences between ESs and 

GAs lie. 

ES, GAs and associated algorithms are now known collectively as evolutionary algorithms 

and their use as evolutionary computation. This exciting new field is thoroughly reviewed in 

http://csepl.phy.ornl.gov/CSEP/MQ/NODE44.html
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much more detail than is possible here in two excellent new publications by Baeck [63] and 

Schwefel [69]. 

Mutation: 

In GA implementations mutation is usually a background operator, with crossover 

(recombination) being the primary search mechanism. In ES implementations mutation takes 

a much more central role. This mutation mechanism enables the ES algorithm to evolve its 

own strategy parameters appropriate to the problem being tackled as the search progresses, a 

process termed self-adaptation by Schwefel [67]. For ES, same mutation technique given in 

Appendix G for Genetic Algorithm is used. 
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Appendix H ERS System Test Setup 

ENERGY RESOURCE STATION 
SYSTEM TEST SETUP 

GENERAL INFORMATION Vteps»*: 
Principle Investigator: Dr Ron Nelson 
Test Group: 
Test Name: FLC3 4 Comparison 
Expected duration of test: 
Date: 03/31 - 04fll6/P5 

Phone: 
E-mail: 
Program: 
Data: 0 Public D Private 
0 Send to FTP? 

Description of test: Fuzzv Logic Control of AHU SATEMP via chilled mater valve. 

other model types Objective of test: Test of Adaptive FLC model comparison 
Comparison of FLC vs. PI PL schemes. 

SPECIAL REQUIREMENT; 

Need cooling load in test rooms, see baseboard heating and lighting schedule fortimes. 

AHU SETUP (TE^T SVSTKO) COMPLETED BY: £ 
AHU-A 
System Control Mode rSYS-CTRLY 
BAways occupied. 
• Night setback: 

Start-Up time start stop 
Occupied time start stop 
Set-Back time start stop 
UnOcc.time: start stop 

Outside Ar Mode 
• Mnimum Flow rate :_ ctm 

AHU-B L'O-L.LE A3 A H U-A 0 J 
System Control Mode I. i o CTRLY 
OAxav's occupied. 
D N jht setback: 

Start-Up time start 
Occupied time start 
Set-Back time start 
UnOcc.time: start 

Outside Ar Mode 
• Mnimum Flow rate:. 

_stop 
stop 
stop 
stop 

Mnimum damper position: Note 2.% open • Mnimum damper position:. 
cfm 

.% open 

S Economizer Enabled: N/A 

Return Fan Mode 
5$ Speed tracking:. 

-F 
% RH 

-F 
% RH 

% Spd of SF Spd 
Flow tracking: Note 3 % of SA F LOW 

§ Flow rate differential: ^ cfm offset 
System Settings 
Static pressure set point: JL2 in. w. g. 
Supply air temperature: Note 1 "F 
PID: B SummerfPband=-45.7, ttime=12D) 

DWirïterfPband=-75. kime=150) 
Notes: 1.SAT-SPT varies bv researcher. 
2 SWO OADMPRs to twed positions bv 
researcher. 3. S WO A B % RF-SPP to 
Sfl^ for rm press control. 

D Economizer Biabled:. 

Return Fan Mode 
D Speed tracking: 
D Flow tracking: 
• Flow rate differential: _ 
System Settings 
Static pressure set point: ; 

Supply air temperature : "F 
PID: • Summert'Pband=-45.7, ltime=120) 

% Spd of SF Spd 
% of SAFLOW 

cfm offset 

in. w. g. 

•Winter('Pband=-751 ltime=150') 
Notes 
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TEST ROOM SETUP CO&PLETED B. : 
TEST ROOMS A 
Room Temperature Set points 
Occupied time: start 0.00 stop 53:59 

Heating setpoint ZQ. "F 
Cooling setpoint 22. °F 

Unoccupied time:start stop 
Heating setpoint 
Cooling setpoint. 

fiir Flow Rate • Interior 
Occupied time: start stop : 

Mnimum flow rate Note 3 cfm 
lyybximum flow rate cfm 

Unoccupied time:start _ stop 
Mnimum flow rate 
Maximum flow rate 

•flir Flow Rate - Bcterior 
Occupied time: start stop 

cfm 
. cfm 

Mnimum flow rate Note 3 cfm 
lyybximum flow rate : cfm 

Unoccupied time:start. _ stop _ 
Mnimum flow rate 
Itibximum flow rate 

Terminal Heat Selection 
• Hvdronic coils 
El Bectric coils 
Internal Loads 
BBB heat stage-1 : on Notes 1. 2off 
B BB heat stage-2: on _i_L_ off = 

cfm 
. cfm 

TEST ROOMS B same x Teït Roans A B. 
Room Temperature Set points 
Occupied time: start stop 

Heating setpoint : °F 
Cooling setpoint °F 

Unoccupied time :start ^ stop 
£ "F 
- "F 

Heating setpoint 
Cooling setpoint. 

fiir Flow Rate - Interior 
Occupied time: start ; stop 

B Ughting stage-1 on 06:00 off 18:00 
B Ughting stage-2 on 06:00 off 18:00 
Return Duct Configuration: 
O Ducted return 
B Plenum return 
Door Orientation: 
• Open. 
0 Closed. 
B Locked. 
Window Configuration: 
B No Blinds 
• Blinds set to % Open 
• Other: 

Notes: 1 BBHTS1 sched: On 0:00 - 06:00 

Mnimum flow rate 
lyybximum flow rate 

Unoccupied time :start stop 
Mnimum floui rate 
lyybximum flow rate 

Ar Flow Rate - Exterior 
Occupied time: start • stop , 

Mnimum flow rate 
hybximum flow rate 

Unoccupied timeistart stop : 
Mnimum flow rate ; 
Maximum flow rate 

Terminal Heat Selection 
• Hydnonic coils 
• Bectric coils 
Internal Loads 
• BB heat stage-1 : on off % 
• BB heat stage-2: on off _i 
• Ughting stage-1 on off _ 
• Lighting stage-2 on 1 off M 
Return Duct Configuration: 
• Ducted return 
• Plenum return 
Door Orientation: 
• Open. 
0 Closed. 
• Locked. 
Window Configuration: 
• No Blinds 
• Blinds set to % 
• Other: 
System Selection: 

B VAV D FCU 
Off 06 :00- 19:00. On 12:00 - 23:50. 

cfm 
. cfm 

ctm 
. cfm 

cfm 
. cfm 

cfm 
. cfm 

Open 

2 BBHTS2 sched: On 0:00 - 06:00 Off 06 00 - 1?H0 On 1 ? M  - 18:00 
Off 18 nn- 23:59. 
3. Rm airflow rates scheduled as oer researcher. See schedules for values andtmes. 
4. jfll testims switched from ducted to plenum returns. 17:00 03/31. 
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GENERAL SYSTEMS SETUP COMPLETED BY: 

AHU-1 
Occupied/Unoccupied mode: 
Byways occupied. 
DNight setback: 

Occupied time start stop 
UnOcc.time: start stop 

Outside jiir Mode 
0 Mnimum Flow rate: cfm 

% open S Mnimum damper position: Û. 

1 Economizer Enabled: 

Return Fan Mode 
D Speed tracking 
• Flow tracking: 
• Flow rate differential: 
D Building static: 

Supply Fan Settings: 
Static pressure set point: 
Supply air temperature: _ 

-F 

% RH 

% Spd of SF Spd 
% of SAFLOW 

cfm offset 
in. w.g. 

in. w. g. 

G ENSEAL SERVICES AREA 
Zone Temperature Set points: 
Occupied time: start stop 

Zone temperature setpoint 

Unoccupied time: start 
Zone temperature setpoint 

Notes:. 

stop 

Chilled Wteter Pump Control: 
• Constant valve, pump VFD control 
El Constant pump speed, valve control 

(Pump on at valve 15% open, off at 5%) 

Notes: 
1 Normal Settings, continuously Occupied because of d m and evening classes 
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COOLING SYSTEM SETUP COMPLETED BY: 
COOLING SYSTBVt 

Chilled Water SUPPIV Set UP: 

HAHU-A: Local a Campus 0 
EAHU-B: Local H Campus • 
HAHU-1: Local • Campus El 
DLoop-C: Local • Campus D 

Chilled Water Pump Set UP: 

Primary Pump CWP-CH: 
H Constant speed: M1& Speed. 
0 Processed controlled. 

L OCA. CHILLffi SYSTBvt 
El Enabled. 
D Laid up. 

Valves Settings: 
D Constant: 

Ice ivbke Bypass : 100 upen to Ar handlers. 
"Thermal Storage Tank: 100 % Open to Tank. 

• Ice make mode. 
Begin Ice Ivbke mode: start stop 

Bid Ice lubke mode: start stop 

Notes: AHU's-Aa B both use ACCH-CH for chilled mater. AHU-1 uses campus chilled 
mater. Manual ylys in Equip Yard set to Chiller Priority Made. No TES ice making 
required. 

HEATING SYSTEM SETUP COMPLETED BY: 

Boiler setpoint: 

D Constant temperature : Boiler not used °F 
• Processed controlled. 

Notes: 
1. Constant CLG-WTR \ ACCH-LWT desired for FLC CHWC-VLV control. 
2 .  AH U-A using std. PIDL control of CHWC-VLV. AHU-B using FLC of CHWC-VLV. 
3. AHU-A B \ SAT-SPTs switched from winter to summer PIDL parameters before start of 
tSSL 

1. Print all schedules to a text file named 'sch.txt' and store it in the Doc folder. 
2. Print all S WO to a text file named 'swo.txt' and store it in the Doc folder. 
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